-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadversarial_mimic.py
1065 lines (954 loc) · 50.3 KB
/
adversarial_mimic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
import time
import os
os.environ['CUDA_LAUNCH_BLOCKING']="1"
import random
import sys
import traceback
import threading
import argparse
import pickle
import torch
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.autograd import Variable
from torch.utils.data import DataLoader, Dataset, TensorDataset
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader, Dataset, TensorDataset
from utils.tokenizers import Tokenizer
# from utils.dataloaders_mimic import R2DataLoader
# from utils.dataloaders_mimic import R2DataLoader
# from utils.datasets_mimic import *
from utils.models import *
from utils.discriminator import *
from utils.discriminators import *
from tqdm import tqdm
from utils.tokenizers import Tokenizer
from utils.disc_dataset import *
from utils.datasets_mimic import get_loader as get_loader_t
from adver_trainer import LSTMDebugger
from metric_performance import compute_scores
class AdversarialBase:
def __init__(self, args):
self.args = args
self.params_d = None
self.params_d_1 = None
self.params = None
self.train_loss = 0
self.batch_size = self.args.batch_size
self.max_bleu1 = -0.001
self.g_min_train_loss = 100000000000
self.d_min_train_loss = 100000000000
self.d_min_train_loss_1 = 100000000000
self._init_model_path()
self.vocab, self.vocab_count = self._init_vocab()
self.extractor = self._init_visual_extractor()
# self.mlc = self._init_mlc()
# self.co_attention = self._init_co_attention()
self.semantic = self._init_semantic_embedding()
self.sentence_model = self._init_sentence_model()
self.word_model = self._init_word_model()
self.model_state_dict = self._load_model_state_dict()
self.disc_model = self._init_disc_model()
self.discs_model = self._init_discs_model()
self.bce_criterion = self._init_bce_criterion()
self.ce_criterion = self._init_ce_criterion()
self.mse_criterion = self._init_mse_criterion()
self.reward = torch.zeros(self.args.batch_size, 1)
self.optimizer = self._init_optimizer()
self.optimizer_d = self._init_optimizer_d()
self.optimizer_d_1 = self._init_optimizer_d_1()
self.model_dir_g = self._init_model_dir_g()
self.model_dir = self._init_model_dir()
self.gen_model = torch.load(self.args.load_model_path)
# self.logger = self._init_logger()
# self.tokenizer = Tokenizer(args)
self.file_list = self.args.file_list
self.split = 'test'
self.s_max = self.args.s_max
self.n_max = self.args.n_max
self.transform = transforms.Compose([
transforms.Resize(300),
transforms.RandomCrop(256),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
# self.data_loader = self._init_data_loader(self.args.adver_file_list, self.transform)
self.data_loader = self._init_data_loader(split='train', transform=self.transform, shuffle=True)
# self.data_loader = R2DataLoader(args, s_max=self.s_max, n_max=self.n_max, vocabulary=self.vocab,
# file_list=self.file_list, tokenizer=self.tokenizer, split=self.split,
# transform=self.transform)
self.test_data_loader = self._init_data_loader(split='test', transform=self.transform, shuffle=False)
def _init_data_loader(self, split, transform, shuffle):
data_loader = get_loader_t(data_dir=self.args.data_dir,
split=split,
vocabulary=self.vocab,
transform=transform,
batch_size=self.args.batch_size,
s_max=self.args.s_max,
n_max=self.args.n_max,
shuffle=shuffle)
return data_loader
def _init_vocab(self):
with open(self.args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
# print("Vocabulary Size:{}\n".format(len(vocab)))
return vocab, len(vocab)
def _init_model_path(self):
if not os.path.exists(self.args.model_path):
os.makedirs(self.args.model_path)
def _init_data_loader_true(self): # 加载数据 true data
data_loader = get_loader(text_path=self.args.disc_train_true_data_list,
vocabulary=self.vocab,
batch_size=self.batch_size,
s_max=6,
n_max=30,
shuffle=True)
return data_loader
def _init_data_loader_fake(self): # 加载数据 fake data
data_loader = get_loader(text_path=self.args.disc_train_fake_data_list,
vocabulary=self.vocab,
batch_size=self.batch_size,
s_max=6,
n_max=30,
shuffle=True)
return data_loader
def _load_model_state_dict(self):
self.start_epoch = 0
try:
model_state = torch.load(self.args.load_disc_model_path)
self.start_epoch = model_state['epoch']
print("[Load Discriminator -{} Succeed!]\n".format(self.args.load_disc_model_path))
print("Load From Epoch {}\n".format(model_state['epoch']))
return model_state
except Exception as err:
print("[Load Discriminator Failed] {}\n".format(err))
return None
def _init_visual_extractor(self):
model = VisualFeatureExtractor(self.args.embed_size)
try:
model_state = torch.load(self.args.load_visual_model_path)
model.load_state_dict(model_state['extractor'])
print("[Load Visual Extractor Succeed!]\n")
except Exception as err:
print("[Load Visual Extractor Model Failed] {}\n".format(err))
if not self.args.visual_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_semantic_embedding(self):
model = SemanticEmbedding(embed_size=self.args.embed_size)
try:
model_state = torch.load(self.args.load_semantic_model_path)
model.load_state_dict(model_state['semantic'])
print("[Load Semantic Embedding Succeed!]\n")
except Exception as err:
print("[Load Semantic Embedding Failed {}!]\n".format(err))
if not self.args.semantic_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_mlc(self):
model = MLC(classes=self.args.classes,
sementic_features_dim=self.args.sementic_features_dim,
fc_in_features=self.extractor.out_features,
k=self.args.k)
try:
model_state = torch.load(self.args.load_mlc_model_path)
model.load_state_dict(model_state['mlc'])
# print("[Load MLC Succeed!]\n")
except Exception as err:
print("[Load MLC Failed {}!]\n".format(err))
if not self.args.mlc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_co_attention(self):
model = CoAttention(version=self.args.attention_version,
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
visual_size=self.extractor.out_features,
k=self.args.k,
momentum=self.args.momentum)
try:
model_state = torch.load(self.args.load_co_model_path)
model.load_state_dict(model_state['co_attention'])
# print("[Load Co-attention Succeed!]\n")
except Exception as err:
print("[Load Co-attention Failed {}!]\n".format(err))
if not self.args.co_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_sentence_model(self):
raise NotImplementedError
def _init_word_model(self):
raise NotImplementedError
# def _init_logger(self):
# logger = open('./results/results.txt', 'w')
# return logger
def __save_json(self, result):
result_path = self.args.result_path
if not os.path.exists(result_path):
os.makedirs(result_path)
with open(os.path.join(result_path, '{}.json'.format(self.args.result_name)), 'w') as f:
json.dump(result, f) # 将json信息写进文件 dump
def __save_json_test(self, result):
result_path = self.args.result_path_test
if not os.path.exists(result_path):
os.makedirs(result_path)
with open(os.path.join(result_path, '{}.json'.format(self.args.result_name)), 'w') as f:
json.dump(result, f) # 将json信息写进文件 dump
def __vec2sent(self, words_id): # array是word_id 将Word_id转成单词
sampled_caption = []
for word_id in words_id:
word = self.vocab.get_word_by_id(word_id)
if word == '<start>':
continue
if word == '<end>' or word == '<pad>':
break
sampled_caption.append(word)
return ' '.join(sampled_caption)
def generate(self):
self.extractor.train()
self.semantic.train()
self.sentence_model.train()
self.word_model.train()
progress_bar = tqdm(self.data_loader, desc='Generating')
results = {}
with open("./data/new_data/all_true_data_mimic.json", 'r') as fj:
data = json.load(fj)
write1 = open('./data/new_data/disc_train_fake_data.txt', 'w')
fj = open('./data/new_data/disc_train_true_data.txt', 'w')
for images1, images2, captions, prob, image_id in progress_bar:
images_frontal = self._to_var(images1, requires_grad=False)
images_lateral = self._to_var(images2, requires_grad=False)
frontal, lateral, avg = self.extractor.forward(images_frontal, images_lateral)
state_c, state_h = self.semantic.forward(avg)
state = (torch.unsqueeze(state_c, 0), torch.unsqueeze(state_h, 0))
pre_hid = torch.unsqueeze(state_h, 1)
# tags, semantic_features = self.mlc.forward(avg_features)
# sentence_states = None
# prev_hidden_states = self._to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size))
pred_sentences = {} # 预测
real_sentences = {} # 真实
for i in image_id:
pred_sentences[i] = {} # 具体到每一张
real_sentences[i] = {}
for i in range(self.args.s_max): # 句子数
# ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features, semantic_features, prev_hidden_states)
topic, p_stop, state, h0_word, c0_word, pre_hid = self.sentence_model.forward(frontal, lateral, state, pre_hid)
p_stop = p_stop.squeeze(1)
p_stop = torch.unsqueeze(torch.max(p_stop, 1)[1], 1)
start_tokens = np.zeros(images_frontal.shape[0])
state_word =(c0_word, h0_word)
start_tokens[:] = self.vocab('<start>')
start_tokens = self._to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sample_ids,_ = self.word_model.sample(start_tokens, state_word)
sample_ids = sample_ids * p_stop.cpu().numpy()
# prev_hidden_states = hidden_state
for id, words_id in zip(image_id, sample_ids):
pred_sentences[id][i] = self.__vec2sent(words_id) # cpu().detach().numpy()
for id, array in zip(image_id, captions):
for i, sent in enumerate(array):
real_sentences[id][i] = self.__vec2sent(sent)
for id in image_id:
results[id] = {
'Pred Sent': pred_sentences[id],
'Real Sent': real_sentences[id]
}
write1.write(str(pred_sentences[id]) + "." + "\n")
fj.write(data[id]+"\n")
fj.close()
write1.close()
# 操作 disc_fake
with open('./data/new_data/disc_train_fake_data.txt', 'r') as fr:
lines = fr.readlines()
for i, line in enumerate(lines):
lines[i] = str(lines[i]).replace('{', '').replace('}', '') # 去除[],这两行按数据不同,可以选择
lines[i] = str(lines[i]).replace('0:', '').replace('1:', '').replace('2:', '').replace('3:', '').replace(
'4:', '').replace('5:', '')
lines[i] = str(lines[i]).replace("'", '') # 去除单引号,每行末尾追加换行符
lines[i] = str(lines[i]).replace(", ", '.')
f = open('./data/new_data/disc_train_fake_data.txt', 'w')
f.writelines(lines)
f.close()
self.__save_json(results)
def test(self):
self.extractor.train()
# self.mlc.train()
# self.co_attention.train()
self.semantic.train()
self.sentence_model.train()
self.word_model.train()
progress_bar = tqdm(self.test_data_loader, desc='Generating')
results = {}
for images1, images2, captions, prob, image_id in progress_bar:
images_frontal = self._to_var(images1, requires_grad=False)
images_lateral = self._to_var(images2, requires_grad=False)
# visual_features, avg_features = self.extractor.forward(images)
# tags, semantic_features = self.mlc.forward(avg_features)
# print(str(images_frontal.shape) + " " + str(images_lateral.shape))
frontal, lateral, avg = self.extractor.forward(images_frontal, images_lateral)
state_c, state_h = self.semantic.forward(avg)
state = (torch.unsqueeze(state_c, 0), torch.unsqueeze(state_h, 0))
pre_hid = torch.unsqueeze(state_h, 1)
# sentence_states = None
# prev_hidden_states = self.__to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size))
pred_sentences = {} # 预测
real_sentences = {} # 真实
for i in image_id:
pred_sentences[i] = {} # 具体到每一张
real_sentences[i] = {}
for i in range(self.args.s_max): # 句子数
# ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features, semantic_features, prev_hidden_states)
# topic, p_stop, hidden_state, sentence_states = self.sentence_model.forward(ctx,
# prev_hidden_states,
# sentence_states)
_, p_stop, state, h0_word, c0_word, pre_hid = self.sentence_model.forward(frontal, lateral, state,
pre_hid)
p_stop = p_stop.squeeze(1)
p_stop = torch.unsqueeze(torch.max(p_stop, 1)[1], 1)
start_tokens = np.zeros(images_frontal.shape[0]) # [4, 1]
# start_tokens[:, 0] = self.vocab('<start>')
# start_tokens = self.__to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
#
# sample_ids = self.word_model.sample(topic, start_tokens)
state_word = (c0_word, h0_word)
start_tokens[:] = self.vocab('<start>')
start_tokens = self._to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sample_ids,_ = self.word_model.sample(start_tokens, state_word) # [4,50]
sample_ids = sample_ids * p_stop.cpu().numpy()
# p_stop = p_stop.squeeze(1)
# p_stop = torch.max(p_stop, 1)[1].unsqueeze(1)
# sample_ids = torch.Tensor(sample_ids).cpu() * p_stop.cpu()
# prev_hidden_states = hidden_state
# print(type(sample_ids))
for id, array in zip(image_id, sample_ids):
pred_sentences[id][i] = self.__vec2sent(array) # cpu().detach().numpy()
# sys.exit()
# for i in image_id:
# with open("./data/new_data/all_true_data.json", 'r') as fj:
# data = json.load(fj)
# fj = open('./data/new_data/disc_train_true_data.txt', 'a')
# fj.writelines(data[i]+"\n")
for id, array in zip(image_id, captions):
for i, sent in enumerate(array):
real_sentences[id][i] = self.__vec2sent(sent)
for id in image_id:
results[id] = {
# 'Real Tags': self.tagger.inv_tags2array(real_tag),
# 'Pred Tags': self.tagger.array2tags(torch.topk(pred_tag, self.args.k)[1].cpu().data.numpy()),
'Pred Sent': pred_sentences[id],
'Real Sent': real_sentences[id]
}
# print(id)
# print("pred_sentences", pred_sentences[id])
# print("=====================================================")
self.__save_json_test(results)
gts = []
res = []
for key in results:
gt = ""
re = ""
for i in results[key]["Real Sent"]:
if results[key]["Real Sent"][i] != "":
gt = gt + results[key]["Real Sent"][i] + " . "
for i in results[key]["Pred Sent"]:
if results[key]["Pred Sent"][i] != "":
re = re + results[key]["Pred Sent"][i] + " . "
gts.append(gt)
res.append(re)
test_met = compute_scores({i: [gt] for i, gt in enumerate(gts)},
{i: [re] for i, re in enumerate(res)})
print(test_met)
return test_met
@staticmethod
def _init_mse_criterion():
return nn.MSELoss()
@staticmethod
def _init_bce_criterion():
return nn.BCELoss()
@staticmethod
def _init_ce_criterion():
return nn.CrossEntropyLoss(size_average=False, reduce=False)
def _init_optimizer(self):
return torch.optim.Adam(params=self.params, lr=self.args.learning_rate)
def _init_optimizer_d(self): # 判别器优化
return torch.optim.Adam(params=self.params_d, lr=self.args.learning_rate)
def _init_optimizer_d_1(self): # 判别器_1优化
return torch.optim.Adam(params=self.params_d_1, lr=self.args.learning_rate)
def _init_model_dir(self):
model_dir = os.path.join(self.args.load_disc_model_path)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir)
return model_dir
def _init_model_dir_1(self):
model_dir = os.path.join(self.args.load_discs_model_path)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir)
return model_dir
def _init_model_dir_g(self):
model_dir = os.path.join(self.args.load_model_path)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir)
return model_dir
def _init_disc_model(self): # 加载判别器
model = Discriminator(seq_length=1,
vocab_size=self.vocab_count,
emb_size=32,
filter_size=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
num_filter=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160],
dropoutRate=0.1)
try:
model_state = torch.load(self.args.load_disc_model_path)
model.load_state_dict(model_state['discriminator'])
print("[Load Discriminator Succeed!]\n")
except Exception as err:
print("[Load Discriminator Model Failed] {}\n".format(err))
if not self.args.disc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params_d:
self.params_d += list(model.parameters())
else:
self.params_d = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_discs_model(self): # 加载判别器
model = Discriminators(vocab_size=self.vocab_count,
input_size=50,
hidden_size=512,
num_class=2,
num_layers=1)
try:
model_state = torch.load(self.args.load_discs_model_path)
model.load_state_dict(model_state['discs_model'])
print("[Load Discriminators Succeed!]\n")
except Exception as err:
print("[Load Discriminators Model Failed] {}\n".format(err))
if not self.args.disc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params_d_1:
self.params_d_1 += list(model.parameters())
else:
self.params_d_1 = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _save_model_g(self,
epoch_id,
g_loss, b1, b2, b3, b4, ROUGE_L, CIDEr, METEOR):
def save_whole_model(_filename):
print("Saved Model in {}\n".format(_filename))
torch.save({'extractor': self.extractor.state_dict(),
'semantic': self.semantic.state_dict(),
'sentence_model': self.sentence_model.state_dict(),
'word_model': self.word_model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'epoch': epoch_id},
os.path.join(self.args.saved_model_name, "{}".format(_filename)))
if g_loss < self.g_min_train_loss:
file_name = "ad_train_best_loss.pth.tar"
save_whole_model(file_name)
self.g_min_train_loss = g_loss
if b1 > self.max_bleu1:
file_name = "test_best.pth.tar"
save_whole_model(file_name)
self.max_bleu1 = b1
self.max_bleu2 = b2
self.max_bleu3 = b3
self.max_bleu4 = b4
self.max_METEOR = METEOR
self.max_ROUGE_L = ROUGE_L
self.max_CIDEr = CIDEr
def _save_model(self,
epoch_id,
loss):
def save_whole_model(_filename):
print("Saved Model in {}\n".format(_filename))
torch.save({'discriminator': self.disc_model.state_dict(),
'optimizer': self.optimizer_d.state_dict(),
'epoch': epoch_id},
os.path.join(self.args.disc_saved_model_name, "{}".format(_filename)))
if loss < self.d_min_train_loss:
file_name = "ad_disc_train_best_loss.pth.tar"
save_whole_model(file_name)
self.d_min_train_loss = loss
def _save_model_1(self,
epoch_id,
loss):
def save_whole_model(_filename):
print("Saved Model in {}\n".format(_filename))
torch.save({'discs_model': self.discs_model.state_dict(),
'optimizer': self.optimizer_d_1.state_dict(),
'epoch': epoch_id},
os.path.join(self.args.discs_saved_model_name, "{}".format(_filename)))
if loss < self.d_min_train_loss_1:
file_name = "ad_discs_train_best_loss.pth.tar"
save_whole_model(file_name)
self.d_min_train_loss_1 = loss
def _to_var(self, x, requires_grad=True):
if self.args.cuda:
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def _get_date(self):
return str(time.strftime('%Y%m%d', time.gmtime()))
def _get_now(self):
return str(time.strftime('%Y%m%d-%H:%M', time.gmtime()))
def loss_with_reward(self, prediction, x, rewards):
embedding = nn.Embedding(9022, 9022)
prediction = embedding(prediction.long())
x1 = x.contiguous().view([-1, 1]).long()
one_hot = torch.Tensor(x1.shape[0], 9022).cuda()
one_hot.zero_()
x2 = one_hot.scatter_(1, x1, 1)
pred1 = prediction.view([-1, 9022])
pred2 = torch.log(torch.clamp(pred1, min=1e-20, max=1.0))
# print(str(prediction.shape) + " " + str(x2.shape) + " " + str(pred2.shape))
prod = torch.mul(x2.cuda(), pred2.cuda())
reduced_prod = torch.sum(prod, dim=1)
rewards_prod = torch.mul(reduced_prod.cuda(), rewards.view([-1]).cuda())
generator_loss = torch.sum(rewards_prod)
return -generator_loss
def loss_with_reward_1(self, prediction, x, rewards):
embedding = nn.Embedding(9022, 9022)
prediction = embedding(prediction.long())
# print ("prediction after embedding:", prediction.shape)
x1 = x.contiguous().view([-1, 1]).long()
# print ("x1:", x1.shape)
one_hot = torch.Tensor(x1.shape[0], 9022).cuda()
one_hot.zero_()
x2 = one_hot.scatter_(1, x1, 1)
pred1 = prediction.view([-1, 9022])
pred2 = torch.log(torch.clamp(pred1, min=1e-20, max=1.0))
prod = torch.mul(x2.cuda(), pred2.cuda())
reduced_prod = torch.sum(prod, dim=1)
rewards_prod = torch.mul(reduced_prod.cuda(), rewards.view([-1]).cuda())
generator_loss = torch.sum(rewards_prod)
return -generator_loss
def adver(self):
print ("update generator")
tag_loss, stop_loss, word_loss, loss = 0, 0, 0, 0
for i, (images1, images2, captions, prob, image_id) in enumerate(self.data_loader):
# print(i)
batch_tag_loss, batch_stop_loss, batch_word_loss, batch_sentence_loss, batch_sentence_loss_1,batch_loss = 0, 0, 0, 0, 0, 0
images_frontal = self._to_var(images1, requires_grad=False)
images_lateral = self._to_var(images2, requires_grad=False)
frontal, lateral, avg = self.extractor.forward(images_frontal, images_lateral)
state_c, state_h = self.semantic.forward(avg)
state = (torch.unsqueeze(state_c, 0), torch.unsqueeze(state_h, 0))
pre_hid = torch.unsqueeze(state_h, 1)
# 中间层
# prev_hidden_states = self._to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size), requires_grad=False)
prob_real = self._to_var(torch.Tensor(prob).long(), requires_grad=False)
captions = self._to_var(torch.Tensor(captions).long(), requires_grad=False)
pred_sentences = [] # 预测
reward_1 = []
for sentence_index in range(0, captions.shape[1]): # 是s_max=6 一个caption里有六句话
# ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features,
# semantic_features,
# prev_hidden_states)
# topic, p_stop, hidden_states, sentence_states = self.sentence_model.forward(ctx,
# prev_hidden_states,
# sentence_states)
# batch_stop_loss += self.ce_criterion(p_stop.squeeze(), prob_real[:, sentence_index]).sum().item()
# for word_index in range(0, captions.shape[2]): # 0
# words = self.word_model.forward(topic, context[:, sentence_index, :word_index])
# word_mask = (context[:, sentence_index, word_index] > 0).float()
# batch_word_loss += (self.ce_criterion(words, context[:, sentence_index, word_index])
# * word_mask).sum() * (0.9 ** word_index)
topic, p_stop, state, h0_word, c0_word, pre_hid = self.sentence_model.forward(frontal, lateral, state, pre_hid)
p_stop = p_stop.squeeze(1)
p_stop = torch.unsqueeze(torch.max(p_stop, 1)[1], 1)
start_tokens = np.zeros(images_frontal.shape[0])
state_word = (c0_word, h0_word)
start_tokens[:] = self.vocab('<start>')
start_tokens = self._to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sample_ids, _ = self.word_model.sample(start_tokens, state_word) # [4,50]
sample_ids = sample_ids * p_stop.cpu().numpy()
reward = []
# print(type(sample_ids))
sample_ids = torch.from_numpy(sample_ids)
# print(type(sample_ids))
pred_sentences.append(sample_ids)
for j in range(0, sample_ids.shape[1]):
output = self.disc_model.forward(sample_ids[:, j:j + 1].cuda().long())
output = self._to_var(output, requires_grad=False)
indices = torch.LongTensor([0])
out = torch.index_select(output, 1, indices.cuda())
for i in out:
reward.append(i.item())
reward = np.transpose(np.array(reward)) / 1.0
reward = torch.Tensor(reward)
s = []
a = [0]
# print(captions.shape)
for i in range(0, captions[:, sentence_index, :].shape[0]):
t = captions[:, sentence_index, :][i].tolist() # 将tensor转为list
for j in range(0, self.args.n_max-captions[:, sentence_index, :].shape[1]):
t.extend(a)
s.append(t)
context1 = torch.Tensor(s)
# print(str(captions[:, sentence_index, :].shape) +" " + str(context1.shape))
# sys.exit()
# 每个词相加得到reward “语义奖励”
batch_sentence_loss += (self.loss_with_reward(sample_ids, context1.cuda(), reward)).sum().item()
# print("---------------")
# 整个句子得到一个reward, “结构奖励”
t = torch.LongTensor()
for i in pred_sentences:
pred_sentences_1 = np.asarray(i)
pred_sentences_2 = torch.from_numpy(pred_sentences_1)
t = torch.cat((t,pred_sentences_2.long()), 1)
final_out = self.discs_model.forward(t)
out_1 = torch.index_select(final_out, 1, indices)
for i in out_1:
reward_1.append(i.item())
reward_1 = np.transpose(np.array(reward)) / 1.0
reward_1 = torch.Tensor(reward_1)
batch_sentence_loss_1 += (self.loss_with_reward_1(sample_ids, context1.cuda(), reward_1)).sum().item()
# batch_sentence_loss = self._to_var(torch.tensor(batch_sentence_loss))
# batch_sentence_loss_1 = self._to_var(torch.tensor(batch_sentence_loss_1))
# batch_loss = self.args.lambda_tag * batch_tag_loss \
# + self.args.lambda_stop * batch_stop_loss \
# + self.args.lambda_word * batch_word_loss\
# + self.args.lambda_sentence * batch_sentence_loss \
# + self.args.lambda_sentence * batch_sentence_loss_1
batch_loss = self.args.lambda_sentence * batch_sentence_loss \
+ self.args.lambda_sentence * batch_sentence_loss_1
batch_loss = self._to_var(torch.tensor(batch_loss))
self.optimizer.zero_grad() # 把梯度置零,也就是把loss关于weight的导数变成0
batch_loss.backward() # 反向传播求梯度retain_graph=True
if self.args.clip > 0:
# 最简单粗暴的方法,设定阈值,当梯度小于/大于阈值时,更新的梯度为阈值 梯度裁剪
torch.nn.utils.clip_grad_norm(self.sentence_model.parameters(), self.args.clip)
torch.nn.utils.clip_grad_norm(self.word_model.parameters(), self.args.clip)
self.optimizer.step() # 更新所有参数
loss += batch_loss.item() # 根本原因
return loss
class Adversarial(AdversarialBase):
def _init_(self, args):
AdversarialBase.__init__(self, args)
self.args = args
def epoch_train(self):
print('===Start Adversarial Training===')
# Train the generator for one step
# for it in range(1): # 这里用的数据是生成器生成的假数据 通过判别器进行判断生成reward 来算生成器的损失(带有reward),用来更新生成器
# train_data_loader = self._init_data_loader_fake()
#
# for i, inputs in enumerate(train_data_loader):
# inputs = self._to_var(torch.Tensor(inputs).float(), requires_grad=False)
# print("inputs shape", inputs.shape)
# inputs = inputs.view(self.batch_size, -1)
# reward = []
# for j in range(inputs.shape[1]):
# output = self.disc_model.forward(inputs[:, j:j+1].long())
# output = self._to_var(output, requires_grad=False)
# indices = torch.LongTensor([0])
# out = torch.index_select(output, 1, indices.cuda())
# for i in out:
# reward.append(i.item())
# reward = np.transpose(np.array(reward)) / 1.0
for _ in range(1):
g_loss = self.adver() # g_step
# Test
for _ in range(2): # t
print("Use New Generator To Generate Fake Data")
self.generate()
print("Train the discriminator")
# 1A Train D on real
for _ in range(3): # d_step
d_loss_t, d_loss_f = 0.0, 0.0
train_data_loader_t = self._init_data_loader_true()
print("---------")
for i, inputs in enumerate(train_data_loader_t):
batch_loss_t,batch_loss_t_1 = 0.0, 0.0
labels = torch.LongTensor(np.ones([self.batch_size, 1], dtype=np.int64))
labels = self._to_var(labels, requires_grad=False)
inputs = self._to_var(torch.Tensor(inputs).float(), requires_grad=False)
inputs = inputs.view(self.batch_size, -1)
outputs = self.discs_model.forward(inputs.long())
batch_loss_t_1 = self.ce_criterion(outputs.squeeze(), labels.squeeze().cpu()).sum()
for j in range(1, inputs.shape[1]):
output = self.disc_model.forward(inputs[:, j:j + 1].long())
output = self._to_var(output, requires_grad=False)
indices = torch.LongTensor([1])
output = torch.index_select(output, 1, indices.cuda())
batch_loss_t += self.bce_criterion(output, labels.float()).sum()
self.optimizer_d.zero_grad()
self.optimizer_d_1.zero_grad()
batch_loss_t = self._to_var(batch_loss_t, requires_grad=True)
batch_loss_t.backward()
batch_loss_t_1 = self._to_var(batch_loss_t_1, requires_grad=True)
batch_loss_t_1.backward()
d_loss_t = batch_loss_t.item()
d_loss_t_1 = batch_loss_t_1.item()
# train on fake data
print("********")
train_data_loader_f = self._init_data_loader_fake()
for i, inputs in enumerate(train_data_loader_f):
batch_loss_f = 0.0
labels = torch.LongTensor(np.zeros([self.args.batch_size, 1], dtype=np.int64))
labels = self._to_var(labels, requires_grad=False)
inputs = self._to_var(torch.Tensor(inputs).float(), requires_grad=False)
inputs = inputs.view(self.args.batch_size, -1)
outputs = self.discs_model.forward(inputs.long())
batch_loss_f_1 = self.ce_criterion(outputs.squeeze(), labels.squeeze().cpu()).sum()
for j in range(1, inputs.shape[1]):
output = self.disc_model.forward(inputs[:, j:j + 1].long())
output = self._to_var(output, requires_grad=False)
indices = torch.LongTensor([0])
output = torch.index_select(output, 1, indices.cuda())
batch_loss_f += (self.bce_criterion(output, labels.float())).sum()
# batch_loss_f = self._to_var(batch_loss_f, requires_grad=True)
# batch_loss_f_1 = self._to_var(batch_loss_f_1, requires_grad=True)
self.optimizer_d.zero_grad()
self.optimizer_d_1.zero_grad()
batch_loss_f = self._to_var(torch.tensor(batch_loss_f))
batch_loss_f_1 = self._to_var(torch.tensor(batch_loss_f_1))
batch_loss_f.backward()
batch_loss_f_1.backward()
if self.args.clip > 0:
torch.nn.utils.clip_grad_norm(self.disc_model.parameters(), self.args.clip)
self.optimizer_d.step()
self.optimizer_d_1.step()
d_loss_f = batch_loss_f.item()
d_loss_f_1 = batch_loss_f_1.item()
print("%%%%%%%")
test_met = self.test()
return g_loss, d_loss_t + d_loss_f, d_loss_t_1 + d_loss_f_1, test_met
def train(self):
Loss_list = []
for epoch in range(0, self.args.epochs):
print ("=======Epoch:", epoch, "======")
g_loss, d_loss, d_loss_1, test_met = self.epoch_train()
print(" D-train loss_t:{} - lr:{}\n".format(d_loss,
self.optimizer_d.param_groups[0]['lr']))
print(" D-train_1 loss_t:{} - lr:{}\n".format(d_loss_1,
self.optimizer_d_1.param_groups[0]['lr']))
print(" G-train loss:{} - lr:{}\n".format(g_loss,
self.optimizer.param_groups[0]['lr']))
# Loss_list.append(g_loss/1000000)
# self.logger.write(str(g_loss/1000000) + "\n")
b1 = test_met['BLEU_1']
b2 = test_met['BLEU_2']
b3 = test_met['BLEU_3']
b4 = test_met['BLEU_4']
METEOR = test_met['METEOR']
CIDEr = test_met['CIDEr']
ROUGE_L = test_met['ROUGE_L']
self._save_model_g(epoch,
g_loss, b1, b2, b3, b4, ROUGE_L, CIDEr, METEOR)
self._save_model(epoch,
d_loss)
self._save_model_1(epoch,
d_loss_1)
# 迭代了200次,所以x的取值范围为(0,200),然后再将每次相对应的准确率以及损失率附在x上
def _init_sentence_model(self):
model = SentenceLSTM(embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size)
try:
model_state = torch.load(self.args.load_sentence_model_path)
model.load_state_dict(model_state['sentence_model'])
print("[Load Sentence Model From {} Succeed!\n".format(self.args.load_sentence_model_path))
except Exception as err:
print("[Load Sentence model Failed {}!]\n".format(err))
if not self.args.sentence_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_word_model(self):
model = WordLSTM(embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
vocab_size=len(self.vocab),
n_max=self.args.n_max)
try:
model_state = torch.load(self.args.load_word_model_path)
model.load_state_dict(model_state['word_model'])
print("[Load Word Model From {} Succeed!\n".format(self.args.load_word_model_path))
except Exception as err:
print("[Load Word model Failed {}!]\n".format(err))
if not self.args.word_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
# RESUME_MODEL_PATH = '../cm/Medical_Report_Generation_with_CNN_HLSTM/models/2023-10-30 21:31/train_best.pth.tar'
"""
Data Argument
"""
parser.add_argument('--data_dir', type=str, default='/home/upc/sxx/Data/mimic_cxr/annotation.json',
help='path for images')
parser.add_argument('--patience', type=int, default=50)
# parser.add_argument('--mode', type=str, default='train')
parser.add_argument('--batch_size', type=int, default=32)
# Disc Path Argument
parser.add_argument('--disc_train_true_data_list', type=str, default='./data/new_data/disc_train_true_data.txt',
help='the path for True data')
parser.add_argument('--disc_train_fake_data_list', type=str, default='./data/new_data/disc_train_fake_data.txt',
help='the path for Fake data')
parser.add_argument('--adver_file_list', type=str, default='./data/new_data/val_data.txt',
help='the val array')
parser.add_argument('--file_list', type=str, default='./data/new_data/adver_list.txt',
help='the path for test file list')
parser.add_argument('--threshold', type=int, default=3, help='the cut off frequency for the words.')
# transforms argument
parser.add_argument('--resize', type=int, default=256,
help='size for resizing images')
parser.add_argument('--crop_size', type=int, default=224,
help='size for randomly cropping images')
# Disc Load/Save model argument
parser.add_argument('--discs_model_path', type=str, default='./report_discs_models/',
help='path for saving disc model')
parser.add_argument('--disc_trained', action='store_true', default=True,
help='Whether train disc or not')
parser.add_argument('--load_disc_model_path', type=str, default='./report_disc_models/v4_mimic/disc_train_best_loss.pth.tar',
help='The path of loaded disc model')
parser.add_argument('--load_discs_model_path', type=str,
default='./report_discs_models/v4_mimic/discs_train_best_loss.pth.tar',
help='The path of loaded discs model')
parser.add_argument('--disc_saved_model_name', type=str, default='./report_disc_models/v4_mimic/',
help='The name of saved model')
parser.add_argument('--discs_saved_model_name', type=str, default='./report_discs_models/v4_mimic/',
help='The name of saved model')
# Path Argument
parser.add_argument('--vocab_path', type=str, default='./data/new_data/vocab_mimic.pkl',
help='the path for vocabulary object')
parser.add_argument('--image_dir', type=str, default='./data/images',
help='the path for images')
parser.add_argument('--caption_json', type=str, default='./data/new_data/captions.json',
help='path for captions')
parser.add_argument('--train_file_list', type=str, default='./data/new_data/test_data.txt',
help='the train array')
parser.add_argument('--val_file_list', type=str, default='./data/new_data/val_data.txt',
help='the val array')
# Load/Save model argument
parser.add_argument('--model_path', type=str, default='./report_v4_models/',
help='path for saving trained models')
parser.add_argument('--load_model_path', type=str,
default='./report_v4_models/v4_mimic/train_best_loss.pth.tar',
help='The path of loaded model')
parser.add_argument('--saved_model_name', type=str, default='./report_v4_models/v4_mimic/',
help='The name of saved model')
# VisualFeatureExtractor
parser.add_argument('--visual_model_name', type=str, default='resnet152',
help='CNN model name')
parser.add_argument('--pretrained', action='store_true', default=False,
help='not using pretrained model when training')
parser.add_argument('--load_visual_model_path', type=str,
default='./report_v4_models/v4_mimic/train_best_loss.pth.tar')
parser.add_argument('--visual_trained', action='store_true', default=True,
help='Whether train visual extractor or not')
parser.add_argument('--num_workers', type=int, default=0, help='the number of workers for dataloader.')
# parser.add_argument('--ann_path', type=str, default='./data/mimic_cxr/annotation.json', help='the path to the directory containing the data.')
parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.')