forked from MuggleWang/CosFace_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
206 lines (180 loc) · 8.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import print_function
from __future__ import division
import argparse
import os
import time
import torch
import torch.utils.data
import torch.optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
import net
from dataset import ImageList
import lfw_eval
import layer
#os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CosFace')
# DATA
parser.add_argument('--root_path', type=str, default='',
help='path to root path of images')
parser.add_argument('--database', type=str, default='WebFace',
help='Which Database for train. (WebFace, VggFace2)')
parser.add_argument('--train_list', type=str, default=None,
help='path to training list')
parser.add_argument('--batch_size', type=int, default=512,
help='input batch size for training (default: 512)')
parser.add_argument('--is_gray', type=bool, default=False,
help='Transform input image to gray or not (default: False)')
# Network
parser.add_argument('--network', type=str, default='sphere20',
help='Which network for train. (sphere20, sphere64, LResNet50E_IR)')
# Classifier
parser.add_argument('--num_class', type=int, default=None,
help='number of people(class)')
parser.add_argument('--classifier_type', type=str, default='MCP',
help='Which classifier for train. (MCP, AL, L)')
# LR policy
parser.add_argument('--epochs', type=int, default=30,
help='number of epochs to train (default: 30)')
parser.add_argument('--lr', type=float, default=0.1,
help='learning rate (default: 0.1)')
parser.add_argument('--step_size', type=list, default=None,
help='lr decay step') # [15000, 22000, 26000][80000,120000,140000][100000, 140000, 160000]
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=5e-4,
metavar='W', help='weight decay (default: 0.0005)')
# Common settings
parser.add_argument('--log_interval', type=int, default=100,
help='how many batches to wait before logging training status')
parser.add_argument('--save_path', type=str, default='checkpoint/',
help='path to save checkpoint')
parser.add_argument('--no_cuda', type=bool, default=False,
help='disables CUDA training')
parser.add_argument('--workers', type=int, default=4,
help='how many workers to load data')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
if args.database is 'WebFace':
args.train_list = '/home/wangyf/dataset/CASIA-WebFace/CASIA-WebFace-112X96.txt'
args.num_class = 10572
args.step_size = [16000, 24000]
elif args.database is 'VggFace2':
args.train_list = '/home/wangyf/dataset/VGG-Face2/VGG-Face2-112X96.txt'
args.num_class = 8069
args.step_size = [80000, 120000, 140000]
else:
raise ValueError("NOT SUPPORT DATABASE! ")
def main():
# --------------------------------------model----------------------------------------
if args.network is 'sphere20':
model = net.sphere(type=20, is_gray=args.is_gray)
model_eval = net.sphere(type=20, is_gray=args.is_gray)
elif args.network is 'sphere64':
model = net.sphere(type=64, is_gray=args.is_gray)
model_eval = net.sphere(type=64, is_gray=args.is_gray)
elif args.network is 'LResNet50E_IR':
model = net.LResNet50E_IR(is_gray=args.is_gray)
model_eval = net.LResNet50E_IR(is_gray=args.is_gray)
else:
raise ValueError("NOT SUPPORT NETWORK! ")
model = torch.nn.DataParallel(model).to(device)
model_eval = model_eval.to(device)
print(model)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
model.module.save(args.save_path + 'CosFace_0_checkpoint.pth')
# 512 is dimension of feature
classifier = {
'MCP': layer.MarginCosineProduct(512, args.num_class).to(device),
'AL' : layer.AngleLinear(512, args.num_class).to(device),
'L' : torch.nn.Linear(512, args.num_class, bias=False).to(device)
}[args.classifier_type]
# ------------------------------------load image---------------------------------------
if args.is_gray:
train_transform = transforms.Compose([
transforms.Grayscale(),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5,), std=(0.5,))
]) # gray
else:
train_transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), # range [0, 255] -> [0.0,1.0]
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) # range [0.0, 1.0] -> [-1.0,1.0]
])
train_loader = torch.utils.data.DataLoader(
ImageList(root=args.root_path, fileList=args.train_list,
transform=train_transform),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
print('length of train Database: ' + str(len(train_loader.dataset)))
print('Number of Identities: ' + str(args.num_class))
# --------------------------------loss function and optimizer-----------------------------
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD([{'params': model.parameters()}, {'params': classifier.parameters()}],
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# ----------------------------------------train----------------------------------------
# lfw_eval.eval(args.save_path + 'CosFace_0_checkpoint.pth')
for epoch in range(1, args.epochs + 1):
train(train_loader, model, classifier, criterion, optimizer, epoch)
model.module.save(args.save_path + 'CosFace_' + str(epoch) + '_checkpoint.pth')
lfw_eval.eval(model_eval, args.save_path + 'CosFace_' + str(epoch) + '_checkpoint.pth', args.is_gray)
print('Finished Training')
def train(train_loader, model, classifier, criterion, optimizer, epoch):
model.train()
print_with_time('Epoch {} start training'.format(epoch))
time_curr = time.time()
loss_display = 0.0
for batch_idx, (data, target) in enumerate(train_loader, 1):
iteration = (epoch - 1) * len(train_loader) + batch_idx
adjust_learning_rate(optimizer, iteration, args.step_size)
data, target = data.to(device), target.to(device)
# compute output
output = model(data)
if isinstance(classifier, torch.nn.Linear):
output = classifier(output)
else:
output = classifier(output, target)
loss = criterion(output, target)
loss_display += loss.item()
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
time_used = time.time() - time_curr
loss_display /= args.log_interval
if args.classifier_type is 'MCP':
INFO = ' Margin: {:.4f}, Scale: {:.2f}'.format(classifier.m, classifier.s)
elif args.classifier_type is 'AL':
INFO = ' lambda: {:.4f}'.format(classifier.lamb)
else:
INFO = ''
print_with_time(
'Train Epoch: {} [{}/{} ({:.0f}%)]{}, Loss: {:.6f}, Elapsed time: {:.4f}s({} iters)'.format(
epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader),
iteration, loss_display, time_used, args.log_interval) + INFO
)
time_curr = time.time()
loss_display = 0.0
def print_with_time(string):
print(time.strftime("%Y-%m-%d %H:%M:%S ", time.localtime()) + string)
def adjust_learning_rate(optimizer, iteration, step_size):
"""Sets the learning rate to the initial LR decayed by 10 each step size"""
if iteration in step_size:
lr = args.lr * (0.1 ** (step_size.index(iteration) + 1))
print_with_time('Adjust learning rate to {}'.format(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
else:
pass
if __name__ == '__main__':
print(args)
main()