Skip to content

Latest commit

 

History

History
130 lines (82 loc) · 3.63 KB

algorithm_kie_sdmgr_en.md

File metadata and controls

130 lines (82 loc) · 3.63 KB

KIE Algorithm - SDMGR

1. Introduction

Paper:

Spatial Dual-Modality Graph Reasoning for Key Information Extraction

Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang

2021

On wildreceipt dataset, the algorithm reproduction Hmean is as follows.

Model Backbone Cnnfig Hmean Download link
SDMGR VGG6 configs/kie/sdmgr/kie_unet_sdmgr.yml 86.70% trained model/inference model(coming soon)

2. 环境配置

Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.

3. Model Training / Evaluation / Prediction

SDMGR is a key information extraction algorithm that classifies each detected textline into predefined categories, such as order ID, invoice number, amount, etc.

The training and test data are collected in the wildreceipt dataset, use following command to downloaded the dataset.

wget https://paddleocr.bj.bcebos.com/ppstructure/dataset/wildreceipt.tar && tar xf wildreceipt.tar

Create dataset soft link to PaddleOCR/train_data directory.

cd PaddleOCR/ && mkdir train_data && cd train_data
ln -s ../../wildreceipt ./

3.1 Model training

The config file is configs/kie/sdmgr/kie_unet_sdmgr.yml, the default dataset path is train_data/wildreceipt.

Use the following command to train the model.

python3 tools/train.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/

3.2 Model evaluation

Use the following command to evaluate the model.

python3 tools/eval.py -c configs/kie/sdmgr/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy

An example of output information is shown below.

[2022/08/10 05:22:23] ppocr INFO: metric eval ***************
[2022/08/10 05:22:23] ppocr INFO: hmean:0.8670120239257812
[2022/08/10 05:22:23] ppocr INFO: fps:10.18816520530961

3.3 Model prediction

Use the following command to load the model and predict. During the prediction, the text file storing the image path and OCR information needs to be loaded in advance. Use Global.infer_img to assign.

python3 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy  Global.infer_img=./train_data/wildreceipt/1.txt

The visualization results and texts are saved in the ./output/sdmgr_kie/ directory by default. The results are as follows.

4. Inference and Deployment

4.1 Python Inference

Not supported

4.2 C++ Inference

Not supported

4.3 Serving

Not supported

4.4 More

Not supported

5. FAQ

Citation

@misc{sun2021spatial,
      title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
      author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
      year={2021},
      eprint={2103.14470},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}