diff --git a/README.md b/README.md index 29c8d3289ac..9db569a52f4 100644 --- a/README.md +++ b/README.md @@ -107,7 +107,7 @@ take the average GEMPAK script for a weather map, you need to: One of the benefits hoped to achieve over GEMPAK is to make it easier to use these routines for any meteorological Python application; this means making it easy to pull out the LCL -calculation and just use that, or re-use the Skew-T with your own data code. MetPy also prides +calculation and just use that, or reuse the Skew-T with your own data code. MetPy also prides itself on being well-documented and well-tested, so that on-going maintenance is easily manageable. diff --git a/examples/calculations/Vorticity.py b/examples/calculations/Vorticity.py index 1cd256a34e8..d99025d2cc4 100644 --- a/examples/calculations/Vorticity.py +++ b/examples/calculations/Vorticity.py @@ -20,13 +20,13 @@ ds = example_data() # Calculate the vertical vorticity of the flow -vor = mpcalc.vorticity(ds.uwind, ds.vwind) +vort = mpcalc.vorticity(ds.uwind, ds.vwind) # start figure and set axis fig, ax = plt.subplots(figsize=(5, 5)) # scale vorticity by 1e5 for plotting purposes -cf = ax.contourf(ds.lon, ds.lat, vor * 1e5, range(-80, 81, 1), cmap=plt.cm.PuOr_r) +cf = ax.contourf(ds.lon, ds.lat, vort * 1e5, range(-80, 81, 1), cmap=plt.cm.PuOr_r) plt.colorbar(cf, pad=0, aspect=50) ax.barbs(ds.lon.values, ds.lat.values, ds.uwind, ds.vwind, color='black', length=5, alpha=0.5) ax.set(xlim=(260, 270), ylim=(30, 40)) diff --git a/examples/gridding/Natural_Neighbor_Verification.py b/examples/gridding/Natural_Neighbor_Verification.py index 24d8fff332b..ae314665708 100644 --- a/examples/gridding/Natural_Neighbor_Verification.py +++ b/examples/gridding/Natural_Neighbor_Verification.py @@ -162,11 +162,11 @@ def draw_circle(ax, x, y, r, m, label): # spatial data structure that we use here simply to show areal ratios. # Notice that the two natural neighbor triangle circumcenters are also vertices # in the Voronoi plot (green dots), and the observations are in the polygons (blue dots). -vor = Voronoi(list(zip(xp, yp))) +vort = Voronoi(list(zip(xp, yp))) fig, ax = plt.subplots(1, 1, figsize=(15, 10)) ax.ishold = lambda: True # Work-around for Matplotlib 3.0.0 incompatibility -voronoi_plot_2d(vor, ax=ax) +voronoi_plot_2d(vort, ax=ax) nn_ind = np.array([0, 5, 7, 8]) z_0 = zp[nn_ind] diff --git a/examples/plots/Station_Plot_with_Layout.py b/examples/plots/Station_Plot_with_Layout.py index e98fd701727..af884491703 100644 --- a/examples/plots/Station_Plot_with_Layout.py +++ b/examples/plots/Station_Plot_with_Layout.py @@ -15,7 +15,7 @@ The `StationPlotLayout` class is used to standardize the plotting various parameters (i.e. temperature), keeping track of the location, formatting, and even the units for use in -the station plot. This makes it easy (if using standardized names) to re-use a given layout +the station plot. This makes it easy (if using standardized names) to reuse a given layout of a station plot. """ import cartopy.crs as ccrs