diff --git a/src/foundation/symmetric-binary-relations.lagda.md b/src/foundation/symmetric-binary-relations.lagda.md index 2af23d658b..c9688b1722 100644 --- a/src/foundation/symmetric-binary-relations.lagda.md +++ b/src/foundation/symmetric-binary-relations.lagda.md @@ -49,105 +49,105 @@ universe `𝒰`. ### Symmetric binary relations ```agda -symmetric-binary-relation : +Symmetric-Relation : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) -symmetric-binary-relation l2 A = symmetric-operation A (UU l2) +Symmetric-Relation l2 A = symmetric-operation A (UU l2) ``` ### Action on symmetries of symmetric binary relations ```agda module _ - {l1 l2 : Level} {A : UU l1} (R : symmetric-binary-relation l2 A) + {l1 l2 : Level} {A : UU l1} (R : Symmetric-Relation l2 A) where abstract - equiv-tr-symmetric-binary-relation : + equiv-tr-Symmetric-Relation : (p q : unordered-pair A) → Eq-unordered-pair p q → R p ≃ R q - equiv-tr-symmetric-binary-relation p = + equiv-tr-Symmetric-Relation p = ind-Eq-unordered-pair p (λ q e → R p ≃ R q) id-equiv - compute-refl-equiv-tr-symmetric-binary-relation : + compute-refl-equiv-tr-Symmetric-Relation : (p : unordered-pair A) → - equiv-tr-symmetric-binary-relation p p (refl-Eq-unordered-pair p) = + equiv-tr-Symmetric-Relation p p (refl-Eq-unordered-pair p) = id-equiv - compute-refl-equiv-tr-symmetric-binary-relation p = + compute-refl-equiv-tr-Symmetric-Relation p = compute-refl-ind-Eq-unordered-pair p (λ q e → R p ≃ R q) id-equiv - htpy-compute-refl-equiv-tr-symmetric-binary-relation : + htpy-compute-refl-equiv-tr-Symmetric-Relation : (p : unordered-pair A) → htpy-equiv - ( equiv-tr-symmetric-binary-relation p p (refl-Eq-unordered-pair p)) + ( equiv-tr-Symmetric-Relation p p (refl-Eq-unordered-pair p)) ( id-equiv) - htpy-compute-refl-equiv-tr-symmetric-binary-relation p = - htpy-eq-equiv (compute-refl-equiv-tr-symmetric-binary-relation p) + htpy-compute-refl-equiv-tr-Symmetric-Relation p = + htpy-eq-equiv (compute-refl-equiv-tr-Symmetric-Relation p) abstract - tr-symmetric-binary-relation : + tr-Symmetric-Relation : (p q : unordered-pair A) → Eq-unordered-pair p q → R p → R q - tr-symmetric-binary-relation p q e = - map-equiv (equiv-tr-symmetric-binary-relation p q e) + tr-Symmetric-Relation p q e = + map-equiv (equiv-tr-Symmetric-Relation p q e) - tr-inv-symmetric-binary-relation : + tr-inv-Symmetric-Relation : (p q : unordered-pair A) → Eq-unordered-pair p q → R q → R p - tr-inv-symmetric-binary-relation p q e = - map-inv-equiv (equiv-tr-symmetric-binary-relation p q e) + tr-inv-Symmetric-Relation p q e = + map-inv-equiv (equiv-tr-Symmetric-Relation p q e) - is-section-tr-inv-symmetric-binary-relation : + is-section-tr-inv-Symmetric-Relation : (p q : unordered-pair A) (e : Eq-unordered-pair p q) → - tr-symmetric-binary-relation p q e ∘ - tr-inv-symmetric-binary-relation p q e ~ + tr-Symmetric-Relation p q e ∘ + tr-inv-Symmetric-Relation p q e ~ id - is-section-tr-inv-symmetric-binary-relation p q e = - is-section-map-inv-equiv (equiv-tr-symmetric-binary-relation p q e) + is-section-tr-inv-Symmetric-Relation p q e = + is-section-map-inv-equiv (equiv-tr-Symmetric-Relation p q e) - is-retraction-tr-inv-symmetric-binary-relation : + is-retraction-tr-inv-Symmetric-Relation : (p q : unordered-pair A) (e : Eq-unordered-pair p q) → - tr-inv-symmetric-binary-relation p q e ∘ - tr-symmetric-binary-relation p q e ~ + tr-inv-Symmetric-Relation p q e ∘ + tr-Symmetric-Relation p q e ~ id - is-retraction-tr-inv-symmetric-binary-relation p q e = - is-retraction-map-inv-equiv (equiv-tr-symmetric-binary-relation p q e) + is-retraction-tr-inv-Symmetric-Relation p q e = + is-retraction-map-inv-equiv (equiv-tr-Symmetric-Relation p q e) - compute-refl-tr-symmetric-binary-relation : + compute-refl-tr-Symmetric-Relation : (p : unordered-pair A) → - tr-symmetric-binary-relation p p (refl-Eq-unordered-pair p) = id - compute-refl-tr-symmetric-binary-relation p = - ap map-equiv (compute-refl-equiv-tr-symmetric-binary-relation p) + tr-Symmetric-Relation p p (refl-Eq-unordered-pair p) = id + compute-refl-tr-Symmetric-Relation p = + ap map-equiv (compute-refl-equiv-tr-Symmetric-Relation p) - htpy-compute-refl-tr-symmetric-binary-relation : + htpy-compute-refl-tr-Symmetric-Relation : (p : unordered-pair A) → - tr-symmetric-binary-relation p p (refl-Eq-unordered-pair p) ~ id - htpy-compute-refl-tr-symmetric-binary-relation p = - htpy-eq (compute-refl-tr-symmetric-binary-relation p) + tr-Symmetric-Relation p p (refl-Eq-unordered-pair p) ~ id + htpy-compute-refl-tr-Symmetric-Relation p = + htpy-eq (compute-refl-tr-Symmetric-Relation p) ``` ### The underlying binary relation of a symmetric binary relation ```agda module _ - {l1 l2 : Level} {A : UU l1} (R : symmetric-binary-relation l2 A) + {l1 l2 : Level} {A : UU l1} (R : Symmetric-Relation l2 A) where - relation-symmetric-binary-relation : Relation l2 A - relation-symmetric-binary-relation x y = R (standard-unordered-pair x y) + relation-Symmetric-Relation : Relation l2 A + relation-Symmetric-Relation x y = R (standard-unordered-pair x y) - equiv-symmetric-relation-symmetric-binary-relation : + equiv-symmetric-relation-Symmetric-Relation : {x y : A} → - relation-symmetric-binary-relation x y ≃ - relation-symmetric-binary-relation y x - equiv-symmetric-relation-symmetric-binary-relation {x} {y} = - equiv-tr-symmetric-binary-relation R + relation-Symmetric-Relation x y ≃ + relation-Symmetric-Relation y x + equiv-symmetric-relation-Symmetric-Relation {x} {y} = + equiv-tr-Symmetric-Relation R ( standard-unordered-pair x y) ( standard-unordered-pair y x) ( swap-standard-unordered-pair x y) - symmetric-relation-symmetric-binary-relation : + symmetric-relation-Symmetric-Relation : {x y : A} → - relation-symmetric-binary-relation x y → - relation-symmetric-binary-relation y x - symmetric-relation-symmetric-binary-relation = - map-equiv equiv-symmetric-relation-symmetric-binary-relation + relation-Symmetric-Relation x y → + relation-Symmetric-Relation y x + symmetric-relation-Symmetric-Relation = + map-equiv equiv-symmetric-relation-Symmetric-Relation ``` ### The forgetful functor from binary relations to symmetric binary relations @@ -157,17 +157,17 @@ module _ {l1 l2 : Level} {A : UU l1} (R : Relation l2 A) where - symmetric-binary-relation-Relation : symmetric-binary-relation l2 A - symmetric-binary-relation-Relation p = + symmetric-relation-Relation : Symmetric-Relation l2 A + symmetric-relation-Relation p = Σ ( type-unordered-pair p) ( λ i → R (element-unordered-pair p i) (other-element-unordered-pair p i)) - unit-symmetric-binary-relation-Relation : + unit-symmetric-relation-Relation : (x y : A) → R x y → - relation-symmetric-binary-relation symmetric-binary-relation-Relation x y - pr1 (unit-symmetric-binary-relation-Relation x y r) = zero-Fin 1 - pr2 (unit-symmetric-binary-relation-Relation x y r) = + relation-Symmetric-Relation symmetric-relation-Relation x y + pr1 (unit-symmetric-relation-Relation x y r) = zero-Fin 1 + pr2 (unit-symmetric-relation-Relation x y r) = tr ( R x) ( inv (compute-other-element-standard-unordered-pair x y (zero-Fin 1))) @@ -181,18 +181,18 @@ module _ {l1 l2 l3 : Level} {A : UU l1} where - hom-symmetric-binary-relation : - symmetric-binary-relation l2 A → symmetric-binary-relation l3 A → + hom-Symmetric-Relation : + Symmetric-Relation l2 A → Symmetric-Relation l3 A → UU (lsuc lzero ⊔ l1 ⊔ l2 ⊔ l3) - hom-symmetric-binary-relation R S = + hom-Symmetric-Relation R S = (p : unordered-pair A) → R p → S p - hom-relation-hom-symmetric-binary-relation : - (R : symmetric-binary-relation l2 A) (S : symmetric-binary-relation l3 A) → - hom-symmetric-binary-relation R S → + hom-relation-hom-Symmetric-Relation : + (R : Symmetric-Relation l2 A) (S : Symmetric-Relation l3 A) → + hom-Symmetric-Relation R S → hom-Relation - ( relation-symmetric-binary-relation R) - ( relation-symmetric-binary-relation S) - hom-relation-hom-symmetric-binary-relation R S f x y = + ( relation-Symmetric-Relation R) + ( relation-Symmetric-Relation S) + hom-relation-hom-Symmetric-Relation R S f x y = f (standard-unordered-pair x y) ```