forked from AstroSnow/PIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPIP_rot.f90
764 lines (680 loc) · 30.3 KB
/
PIP_rot.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
module PIP_rot
use globalvar,only:ix,jx,kx,ac,xi_n,gm_rec,gm_ion,nvar_h,nvar_m,&
flag_pip_imp,gm,n_fraction,t_ir,col,x,y,z,beta,T0, n0,my_rank,flag_IR_type,flag_col,arb_heat,nout,flag_restart,Colrat,&
Nexcite,n0,f_p_ini,f_p_p_ini,n0fac,Gm_rec_ref,expinttab
use scheme_rot,only:get_Te_HD,get_Te_MHD,cq2pv_HD,cq2pv_MHD,get_vel_diff
use parameters,only:T_r_p,deg1,deg2,pi
implicit none
integer,save::col_type,IR_type,xin_type,is_IR,IR_T_dependence
double precision factor,factor2,mu_p,mu_n,T_ionization,factor3
double precision :: rec_fac,ion_fac
double precision :: ioneq,f_n,f_p, f_p_p,tfac
contains
subroutine initialize_collisional(flag_col)
integer,intent(inout)::flag_col
if (flag_col.eq.0) return
allocate(ac(ix,jx,kx),xi_n(ix,jx,kx))
if (flag_col.ge.2 .and. flag_col.le.7) then
col_type=flag_col-1
else
col_type=0
if(my_rank.eq.1) print*, 'WARNING: constant alpha used'
endif
!mod((flag_col/10),10)
flag_col=mod(flag_col,10)
T_ionization=T_r_p
factor=2.7d0*dsqrt(T0*T_r_p)*T0*T_r_p/5.6e-16/n0
! factor=2.7d0*dsqrt(T0*T_r_p)*T0*T_r_p/5.6e-16/n0
! factor2=1.0d0/((T0/T_r_p)**deg1/factor+(T0/T_r_p)**deg2*exp(-T_r_p/T0))
! factor2=1.0d0/(T_r_p/T0/factor+dsqrt(T0/T_r_p)*exp(-T_r_p/T0))
factor2=1.0d0/(T_ionization/factor+dexp(-T_ionization)/dsqrt(T_ionization))
mu_p=0.5d0
mu_n=1.0d0
end subroutine initialize_collisional
subroutine set_collisional(U_h,U_m)
double precision,intent(inout)::U_h(ix,jx,kx,nvar_h),U_m(ix,jx,kx,nvar_m)
double precision,parameter::r_x=0.2d0,r_y=1.0d0,r_z=5.0d0
double precision,allocatable:: Te_m(:,:,:), Te_h(:,:,:), vd(:,:,:,:)
integer i,j,k
select case(col_type)
case(0)
ac(:,:,:)=col
case(1)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)/dsqrt(beta/2.d0*gm)
case(2)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)
case(3)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx), vd(ix,jx,kx,3))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
call get_vel_diff(vd,U_h,U_m)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)*dsqrt(1.d0 + &
9.d0*pi/64.d0*gm/2.d0*sum(vd**2.d0,dim=4)/(Te_h(:,:,:)+Te_m(:,:,:))) &
/dsqrt(beta/2.d0*gm)
case(4)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx), vd(ix,jx,kx,3))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
call get_vel_diff(vd,U_h,U_m)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)*dsqrt(1.d0 + &
9.d0*pi/64.d0*gm/2.d0*sum(vd**2.d0,dim=4)/(Te_h(:,:,:)+Te_m(:,:,:)))
case(5)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx), vd(ix,jx,kx,3))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
call get_vel_diff(vd,U_h,U_m)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)*dsqrt(1.d0 + &
9.d0*pi/64.d0*gm/2.d0*sum(vd**2.d0,dim=4)/(Te_h(:,:,:)+Te_m(:,:,:))) &
/dsqrt(beta/2.d0*gm)*((beta/2.d0*gm) &
/(Te_h(:,:,:)+Te_m(:,:,:))/2.d0+gm*pi/16.d0*sum(vd**2,dim=4))**0.125d0
case(6)
allocate(Te_h(ix,jx,kx), Te_m(ix,jx,kx), vd(ix,jx,kx,3))
call get_Te_MHD(U_m,Te_m)
call get_Te_HD(U_h,Te_h)
call get_vel_diff(vd,U_h,U_m)
ac(:,:,:)=col*dsqrt((Te_h(:,:,:)+Te_m(:,:,:))/2.d0)*dsqrt(1.d0 + &
9.d0*pi/64.d0*gm/2.d0*sum(vd**2.d0,dim=4)/(Te_h(:,:,:)+Te_m(:,:,:)))&
/((Te_h(:,:,:)+Te_m(:,:,:))/2.d0+gm*pi/16.d0*sum(vd**2,dim=4))**0.125d0
end select
end subroutine set_collisional
subroutine initialize_IR(flag_IR)
integer,intent(inout)::flag_IR
if (flag_IR.eq.0) return
allocate(Gm_rec(ix,jx,kx),Gm_ion(ix,jx,kx))
IR_type=flag_IR
end subroutine initialize_IR
function rec_temperature(Te)
double precision Te(ix,jx,kx)
double precision rec_temperature(ix,jx,kx)
if(IR_T_dependence.eq.0) then
rec_temperature=T_ionization/te/factor*factor2
else if(IR_T_dependence.eq.1) then
rec_temperature=n_fraction
endif
end function rec_temperature
function ion_temperature(Te)
double precision Te(ix,jx,kx)
double precision ion_temperature(ix,jx,kx)
if(IR_T_dependence.eq.0) then
ion_temperature=dsqrt(Te/T_ionization)*dexp(-T_ionization/Te)*factor2
else if(IR_T_dependence.eq.1) then
ion_temperature=1.0-n_fraction
endif
end function ion_temperature
subroutine set_IR(U_h,U_m)
double precision,intent(inout)::U_h(ix,jx,kx,nvar_h),U_m(ix,jx,kx,nvar_m)
double precision Te_n(ix,jx,kx),Te_p(ix,jx,kx),Te_e(ix,jx,kx)
double precision xi_n_tmp(ix,jx,kx)
double precision Te_0
select case(IR_type)
case(1)
!Formulation from Jeffery paper
!WORK IN PROGRESS - Need to define normalisation quantities
!
!Get species temperatures
call get_Te_HD(U_h,Te_n)
call get_Te_MHD(U_m,Te_p)
factor=dexp(-13.2d0/(T0/11605.0d0)) !exp(-E0/T0) in electron volts
factor2=2.7*(13.2d0*11605.0d0)**-2.0d0*T0**(1.0d0/2.0d0)*n0
factor3=5.6e-16*(13.2d0*11605.0d0)**-2.0d0*T0**(-1.0d0)*n0**2.0d0
rec_fac=factor2/factor3 !is this right?
ion_fac=factor3/t_ir
Gm_rec=Te_p**(-0.5d0)*U_m(:,:,:,1)**2.d0*rec_fac*ion_fac
Gm_ion=Te_p**0.5d0*U_m(:,:,:,1)*factor**(1.0d0/Te_p)*ion_fac
! print*,'factor',factor
! print*,'factor2',factor2
! print*,'factor3',factor3
case(2)
!Formulation from Popescu+2019 paper
!Empirical estimates for the rates
!WORK IN PROGRESS
call get_Te_HD(U_h,Te_n)
call get_Te_MHD(U_m,Te_p)
!Calculate electron temperature in eV
Te_0=T0/1.1604e4
rec_fac=2.6e-19*(n0*1.0e6)/dsqrt(Te_0)*t_ir !n0 converted to m^-3
! ele_n=U(:,:,:,1)*rho0/mh_si
! psi_ion=13.6d0
! A_ion=2.91e-14
! k_ion=0.39d0
! x_ion=0.232d0
factor=dexp(-13.6d0/Te_0)
factor2=2.91e-14*(n0*1.0e6)*(13.6d0/Te_0)**0.39d0
ion_fac=factor2/t_ir
Gm_rec=U_m(:,:,:,1)/dsqrt(Te_p)*rec_fac
! Gm_ion=factor**(-Te_p)*U_m(:,:,:,1)*Te_p**(1.0d0-0.39d0)/(Te_p*0.232d0+13.6d0/Te_0)*ion_fac
Gm_ion=(n0*1.0e6*U_m(:,:,:,1))*2.91e-14*dexp(-13.6d0/Te_0/Te_p)*(13.6d0/Te_0/Te_p)**0.39d0/(0.232d0+13.6d0/Te_0/Te_p)*t_ir
! print*,Gm_rec(1,1,1)/Gm_ion(1,1,1),U_h(1,1,1,1)/U_m(1,1,1,1),(2.6e-19/dsqrt(Te_0))/(2.91e-14/(0.232+13.6/Te_0)* &
! (13.6/Te_0)**0.39*exp(-13.6/Te_0))
! print*,'Gm_rec',Gm_rec(1,1,1)/U_m(1,1,1,1)*t_ir,(n0*1.0e6)*(2.6e-19/dsqrt(Te_0))
! print*,'Gm_ion',Gm_ion(1,1,1)/U_m(1,1,1,1)*t_ir,(n0*1.0e6)*(2.91e-14/(0.232d0+13.6d0/Te_0)*(13.6d0/Te_0)**0.39d0*exp(-13.6d0/Te_0))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
case(3)
!Formulation from Popescu+2019 paper
!Empirical estimates for the rates
!Quarentine attempt
call get_Te_HD(U_h,Te_n)
call get_Te_MHD(U_m,Te_p)
!Calculate electron temperature in eV
Te_0=T0/1.1604e4
rec_fac=2.6e-19*(n0*1.0e6)/dsqrt(Te_0) !n0 converted to m^-3
! factor=dexp(-13.6d0/Te_0)
! factor2=(13.6d0/Te_0)**0.39d0
! factor3=1.d0/(0.232d0+13.6d0/Te_0)
! ion_fac=factor*factor2*factor3
!initial equilibrium fractions
ioneq=(2.6e-19/dsqrt(Te_0))/(2.91e-14/(0.232d0+13.6d0/Te_0)*(13.6d0/Te_0)**0.39d0*dexp(-13.6d0/Te_0))
f_n=ioneq/(ioneq+1.0d0)
f_p=1.0d0-f_n
f_p_p=2.0d0*f_p/(f_n+2.0d0*f_p)
!print*,f_p_p,'f_p_p'
if(mod(flag_col,2) .eq. 1) then
tfac=0.5d0*f_p_p/f_p
!print*,tfac
elseif(mod(flag_col,2) .eq. 0) then
tfac=beta/2.0d0*f_p_p*5.0d0/6.0d0/f_p
else
print*,'option not included!'
stop
endif
!print*,Te_p(1,1,1),'temperature'
!print*,'mod(2,2)=',mod(2,2)
!print*,'mod(3,2)=',mod(3,2)
!print*,'mod(flag_col,2)=',mod(flag_col,2)
!stop
Gm_rec=U_m(:,:,:,1)/dsqrt(Te_p)*t_ir/f_p*dsqrt(tfac)
Gm_ion=2.91e-14*(n0*1.0e6)*U_m(:,:,:,1)*dexp(-13.6d0/Te_0/Te_p*tfac)*(13.6d0/Te_0/Te_p*tfac)**0.39d0
Gm_ion=Gm_ion/(0.232d0+13.6d0/Te_0/Te_p*tfac)/rec_fac/f_p *t_ir
!print*,'set_ir:',maxval(gm_rec),maxval(gm_ion)
if(nout .eq. 0 .and. flag_restart.eq.-1) then
allocate(arb_heat(ix,jx,kx))
if(mod(flag_col,2) .eq. 1) then
arb_heat=Gm_ion*U_h(:,:,:,1)*(13.6d0/gm/T0/8.6173e-5)
elseif(mod(flag_col,2) .eq. 0) then
arb_heat=Gm_ion*U_h(:,:,:,1)*(13.6d0*beta/T0/2.d0/8.6173e-5)
else
print*,'option not included!'
stop
endif
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
case(4) !6 level formula using Leenaarts+2007 and Johnson 1972
!Get the species temperature
call get_Te_HD(U_h,Te_n)
call get_Te_MHD(U_m,Te_p)
!Normalise the temperature
if(mod(flag_col,2) .eq. 1) then
tfac=0.5d0*f_p_p_ini/f_p_ini
!print*,tfac
elseif(mod(flag_col,2) .eq. 0) then
tfac=beta/2.0d0*f_p_p_ini*5.0d0/6.0d0/f_p_ini
else
print*,'option not included!'
stop
endif
if(nout .eq. 0 .and. flag_restart.eq.-1) then
allocate(expinttab(4,1000)) !table for the exponential integral table
call expintread
allocate(Colrat(ix,jx,kx,6,6)) !Allocate the rate array
call get_col_ion_coeff(Te_p*T0/tfac,U_m(:,:,:,1)*n0/n0fac,Gm_ion,Gm_rec)
Gm_rec_ref=Gm_rec(1,1,1) !Get the normalisation recombination rates
!allocate(Nexcite(ix,jx,kx,6)) !Allocate the fractional array (allocated in IC)
endif
!print*,Gm_rec_ref
!stop
!Calculate the coefficients
!print*,Te_p(1,1,1),T0,tfac,Te_p(1,1,1)*T0/tfac,f_p_ini,f_p_p_ini
!print*,U_m(1,1,1,1)*n0/n0fac,U_m(1,1,1,1),n0,n0fac
!stop
!Get the dimensional ionisation and recombination rates
call get_col_ion_coeff(Te_p*T0/tfac,U_m(:,:,:,1)*n0/n0fac,Gm_ion,Gm_rec)
!Normalise the rates based on intial recombination rate
Gm_ion=Gm_ion/Gm_rec_ref*t_ir
Gm_rec=Gm_rec/Gm_rec_ref*t_ir
!print*,Gm_rec(1,1,1),Gm_ion(1,1,1)
end select
end subroutine set_IR
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine expintread
!Read the exponential integral data calculated using IDL code
double precision::ytemp,i0temp,i1temp,i2temp
integer::i
open (unit=17, file='exptab2_i0.txt', status='old', action='read')
open (unit=18, file='exptab2_i1.txt', status='old', action='read')
open (unit=19, file='exptab2_i2.txt', status='old', action='read')
do i=1,1000
read(17,*) ytemp, i0temp
read(18,*) ytemp, i1temp
read(19,*) ytemp, i2temp
expinttab(1,i)=ytemp
expinttab(2,i)=i0temp
expinttab(3,i)=i1temp
expinttab(4,i)=i2temp
!print*,expinttab(:,i)
enddo
end subroutine expintread
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine get_col_ion_coeff(Telec,Nelec,Gm_ion,Gm_rec)
!Calculate the excitation and ionisation coefficients from Johnson 1972
!Assume a 6 level hydrogen atom (1=ground, 2=1st excitation, ...., 6=ionised)
double precision,intent(in)::Telec(ix,jx,kx),Nelec(ix,jx,kx)
double precision,intent(out)::Gm_ion(ix,jx,kx),Gm_rec(ix,jx,kx)
!Universal constants
double precision,parameter::melec=9.10938356e-31 !Electron mass [kg]
double precision,parameter::kboltz=1.38064852e-23 !Boltzmann Constant [m^2 kg s^-2 K^-1]
double precision,parameter::a0bohr=5.29e-11 !Bohr's radius [m]
double precision,parameter::hplank=6.62607004e-34 !Planks constant [m2 kg s^-1]
double precision,parameter::kbhat=1.38064852d0,mehat=9.10938356d0,hhat=6.62607004d0
double precision::gweight(6) !Statistical weighting of excitation states
double precision::Eion(6) !Energy to ionise
double precision::garr(3)
double precision::Colex(6,6),dneut(6)
integer::k,j,i,ii,jj
double precision::rn(6),bn(6),xrat(5,5),Enn(5,5),yhat,rnn(5,5),zhat,gauntfac(5,5),fnn(5,5)
double precision::Ann(5,5),Bnn(5,5),E0y,E1y,E2y,E0z,E1z,E2z
double precision::yn,zn,ziyn,zizn,An0,Bn0
double precision::dntot
integer::nmaxloc
!This is all consant so can be moved somewhere else?
! gweight(1)=2.0*1.0**2 !ground state
! gweight(2)=2.0*2.0**2 !1st level excitation
! gweight(3)=2.0*3.0**2 !2nd level excitation
! gweight(4)=2.0*4.0**2 !3rd level excitation
! gweight(5)=2.0*5.0**2 !4th level excitation
! gweight(6)=1.0 !Ionised hydrogen
gweight(1)=2.d0 !ground state
gweight(2)=8.d0 !1st level excitation
gweight(3)=18.d0 !2nd level excitation
gweight(4)=32.d0 !3rd level excitation
gweight(5)=50.d0 !4th level excitation
gweight(6)=1.d0 !Ionised hydrogen
Eion=[13.6d0,3.4d0,1.51d0,0.85d0,0.54d0,0.0d0] !in eV
Eion=Eion/13.6d0*2.18e-18 !Convert to joules (to be dimensionally correct)
rn(1)=0.45d0 !Equation 31
rn(2)=1.94d0*2.d0**(-1.57d0) !Equation 32
rn(3)=1.94d0*3.d0**(-1.57d0) !Equation 32
rn(4)=1.94d0*4.d0**(-1.57d0) !Equation 32
rn(5)=1.94d0*5.d0**(-1.57d0) !Equation 32
rn(6)=1.94d0*6.d0**(-1.57d0) !Equation 32
bn(1)=-0.603d0 !Equation 25
bn(2)=(1.0d0/2.d0)*(4.0d0-18.63d0/2.d0+36.24d0/(2.d0**2)-&
28.09d0/(2.d0**3)) !Equation 26
bn(3)=(1.0d0/3.d0)*(4.0d0-18.63d0/3.d0+36.24d0/(3.d0**2)-&
28.09d0/(3.d0**3)) !Equation 26
bn(4)=(1.0d0/4.d0)*(4.0d0-18.63d0/4.d0+36.24d0/(4.d0**2)-&
28.09d0/(4.d0**3)) !Equation 26
bn(5)=(1.0d0/5.d0)*(4.0d0-18.63d0/5.d0+36.24d0/(5.d0**2)-&
28.09d0/(5.d0**3)) !Equation 26
bn(6)=(1.0d0/6.d0)*(4.0d0-18.63d0/6.d0+36.24d0/(6.d0**2)-&
28.09d0/(6.d0**3)) !Equation 26
do ii=1,5; do jj=ii+1,5
xrat(ii,jj)=1.0d0-(dble(ii)/dble(jj))**2 !ratio of transition energy to ionisation energy of lower level
Enn(ii,jj)=Eion(ii)-Eion(jj) !Difference in ionisation energies
rnn(ii,jj)=rn(ii)*xrat(ii,jj) !Equation 30
!Gaunt factors from table 1 and equation 4
!Constants so can be moved for speed
if (ii .eq. 1) then
gauntfac(ii,jj)=1.1330d0-0.4059d0/xrat(ii,jj)+0.07014d0/(xrat(ii,jj)**2)
else if (ii .eq. 2) then
gauntfac(ii,jj)=1.0785d0-0.2319d0/xrat(ii,jj)+0.02947d0/(xrat(ii,jj)**2)
else
gauntfac(ii,jj)=0.9935d0+0.2328d0/dble(ii)-0.1296d0/(dble(ii)**2)&
-(1.0d0/xrat(ii,jj))*(1.0d0/dble(ii))*(0.6282d0-0.5598d0/dble(ii)+0.5299d0/(dble(ii)**2))&
+(1.0d0/xrat(ii,jj))**2*(1.0d0/dble(ii)**2)*(0.3887d0-1.181d0/dble(ii)+1.470d0/(dble(ii)**2))
endif
fnn(ii,jj)=32.0d0/3.0d0/dsqrt(3.d0)/pi*dble(ii)/dble(jj)**3/(xrat(ii,jj)**3)*gauntfac(ii,jj) !Equation 3
Ann(ii,jj)=2.0d0*dble(ii)**2/xrat(ii,jj)*fnn(ii,jj) !Equation 11
Bnn(ii,jj)=4.0d0*dble(ii)**4/(dble(jj)**3)/(xrat(ii,jj)**2)*(1.0d0+4.0d0/3.0d0/xrat(ii,jj)+bn(ii)/(xrat(ii,jj)**2)) !Equation 23
enddo;enddo
!set colex to zero initially
colex(:,:)=0.d0
!Loop over the grid
do k=1,kx;do j=1,jx; do i=1,ix
!loop over the Excitation states
do ii=1,5
do jj=ii+1,5
yhat=Enn(ii,jj)/kboltz/Telec(i,j,k) !Equation 37
zhat=rnn(ii,jj)+Enn(ii,jj)/kboltz/Telec(i,j,k) !Equation 38
!Exponential fits (THESE NEED WORK)
call ionexpfittest(yhat,1.d0,0.001d0,0.0001d0,E1y) !Equation 8
call ionexpfittest(zhat,1.d0,0.001d0,0.0001d0,E1z)
call ionexpfittest(yhat,2.d0,0.001d0,0.0001d0,E2y)
call ionexpfittest(zhat,2.d0,0.001d0,0.0001d0,E2z)
! print*,E1y,E1z,E2y,E2z
!Rate coefficient for excitation Equation 36 using electron mass
Colex(ii,jj)=Nelec(i,j,k)*dsqrt(8.d0*kboltz*Telec(i,j,k)/pi/melec)*2.0d0*&
dble(ii)**2/xrat(ii,jj)*pi*a0bohr**2*yhat**2*&
(Ann(ii,jj)*((1.0d0/yhat+0.5d0)*E1y-(1.0d0/zhat+0.5d0)*E1z)+&
(Bnn(ii,jj)-Ann(ii,jj)*dlog(2.d0*dble(ii)**2/xrat(ii,jj)))*(E2y/yhat-E2z/zhat))
enddo
!now do the ionisation states
!Ionisation coefficient
yn=Eion(ii)/kboltz/Telec(i,j,k)
zn=rn(ii)+Eion(ii)/kboltz/Telec(i,j,k)
!Call the hokey exponential integral
call ionexpfittest(yn,1.d0,0.001d0,0.0001d0,E1y) !Equation 8
call ionexpfittest(zn,1.d0,0.001d0,0.0001d0,E1z)
call ionexpfittest(yn,2.d0,0.001d0,0.0001d0,E2y)
call ionexpfittest(zn,2.d0,0.001d0,0.0001d0,E2z)
call ionexpfittest(yn,0.d0,0.001d0,0.0001d0,E0y)
call ionexpfittest(zn,0.d0,0.001d0,0.0001d0,E0z)
ziyn=E0y-2.0d0*E1y+E2y !Equation 42
zizn=E0z-2.0d0*E1z+E2z !Equation 42
if (ii .eq. 1) then
garr(1)= 1.1330d0
garr(2)=-0.4059d0
garr(3)= 0.07014d0
else if (ii .eq. 2) then
garr(1)= 1.0785d0
garr(2)=-0.2319d0
garr(3)= 0.02947d0
else
garr(1)=0.9935d0+0.2328d0/dble(ii)-0.1296d0/(dble(ii)**2)
garr(2)=(-1.0d0/dble(ii))*(0.6282d0-0.5598d0/dble(ii)+0.5299d0/(dble(ii)**2))
garr(3)=(1.0d0/dble(ii))**2*(0.3887d0-1.181d0/dble(ii)+1.470d0/(dble(ii)**2))
endif
!Equation 20
An0=32.0d0/3.0d0/dsqrt(3.d0)/pi*dble(ii)+garr(1)/3.0d0+garr(2)/4.0d0+garr(3)/5.0d0
Bn0=2.0d0/3.0d0*dble(ii)**2*(5.0d0+bn(ii)) !Equation 24
!Ionisation coefficients Equation 35 using electron mass
Colex(ii,6)=Nelec(i,j,k)*dsqrt(8.d0*kboltz*Telec(i,j,k)/pi/melec)&
*2.0d0*dble(ii)**2*pi*a0bohr**2*yn**2*&
(An0*(E1y/yn-E1z/zn)+&
(Bn0-An0*dlog(2.d0*dble(ii)**2))*(ziyn-zizn))
enddo
!Rates
do ii=1,5
!Excitation rates
do jj=1,5
if (ii .eq. jj) then
colrat(i,j,k,ii,jj)=0.d0
else if (jj .gt. ii) then
colrat(i,j,k,ii,jj)=gweight(ii)/gweight(jj)*Colex(ii,jj)*dsqrt(Telec(i,j,k))
else
colrat(i,j,k,ii,jj)=Colex(jj,ii)*dsqrt(Telec(i,j,k))*&
exp(-(Eion(jj)-Eion(ii))/kboltz/Telec(i,j,k))
endif
enddo
!Ionisation rates
colrat(i,j,k,ii,6)=Colex(ii,6)*dsqrt(Telec(i,j,k))*exp(-(Eion(6)-Eion(ii))/kboltz/Telec(i,j,k))
enddo
do ii=1,5
colrat(i,j,k,6,ii)=nelec(i,j,k)*colrat(i,j,k,ii,6)*gweight(ii)/gweight(6)&
/2.0d0*(2.0d0*pi*mehat*kbhat*Telec(i,j,k)/hhat/hhat*1.0e14)**(-3.0d0/2.0d0)*&
exp(Eion(ii)/kboltz/Telec(i,j,k))
enddo
!print*,nelec(i,j,k),Telec(i,j,k)
!print*,colex
!print*,colrat(i,j,k,:,:)
!stop
! Calculate the change in each species
dntot=0.d0
do ii=1,6
do jj=1,6
dneut(ii)=Nexcite(i,j,k,jj)*colrat(i,j,k,jj,ii) - Nexcite(i,j,k,ii)*colrat(i,j,k,ii,jj)
enddo
if (Nexcite(i,j,k,ii) .ne. maxval(Nexcite(i,j,k,:))) then
dntot=dntot+dneut(ii)
endif
enddo
nmaxloc=maxloc(Nexcite(i,j,k,:),DIM=1)
dneut(nmaxloc)=-dntot
Gm_ion(i,j,k)=0.d0
Gm_rec(i,j,k)=0.d0
do ii=1,5
Gm_ion(i,j,k)=Gm_ion(i,j,k)+Nexcite(i,j,k,ii)*colrat(i,j,k,ii,6)
Gm_rec(i,j,k)=Gm_rec(i,j,k)+Nexcite(i,j,k,6)*colrat(i,j,k,6,ii)
enddo
!print*,gm_ion(1,1,1),gm_rec(1,1,1)
!stop
!divide rates by total neutral/plasma density for consistency
Gm_ion(i,j,k)=Gm_ion(i,j,k)/(Nexcite(i,j,k,1)+Nexcite(i,j,k,2)+Nexcite(i,j,k,3)&
+Nexcite(i,j,k,4)+Nexcite(i,j,k,5))
Gm_rec(i,j,k)=Gm_rec(i,j,k)/Nexcite(i,j,k,6)
enddo;enddo;enddo
end subroutine get_col_ion_coeff
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine ionexpfittest(zhat,istar,stepsize,tol,sol)
!numerical integration of the exponential
!This needs work
double precision,intent(in)::zhat,istar,stepsize,tol
double precision,intent(out)::sol
double precision::a,b,fa,fb,sol0,dif,solt
a=1.d0
b=a+stepsize
fa=exp(-zhat*a)*a**(-istar)
fb=exp(-zhat*b)*b**(-istar)
sol0=0.5d0*(b-a)*(fa+fb)
sol=sol0
dif=1.d0
do while (dif .gt. tol)
a=b
b=a+stepsize
fa=exp(-zhat*a)*a**(-istar)
fb=exp(-zhat*b)*b**(-istar)
solt=0.5d0*(b-a)*(fa+fb)
sol=sol+solt
dif=solt/sol0
enddo
end subroutine ionexpfittest
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine hydrogen_excitation_update(dt,rom,roh)
! update the hydrogen excitation states
double precision,intent(in)::dt,rom(ix,jx,kx),roh(ix,jx,kx)
double precision::dneut(6)
double precision::dntot
double precision::dneutv(ix,jx,kx,6)
double precision::dntotv(ix,jx,kx)
integer::i,j,k,ii,jj,nmaxloc
!Vector form
!The new number of electrons/protons is:
Nexcite(:,:,:,6)=rom
! do k=1,kx;do j=1,jx; do i=1,ix
! Calculate the change in each neutral species
dntotv(:,:,:)=0.d0
do ii=1,5
do jj=1,6
dneutv(:,:,:,ii)=Nexcite(:,:,:,jj)*colrat(:,:,:,jj,ii) - Nexcite(:,:,:,ii)*colrat(:,:,:,ii,jj)
enddo
enddo
!print*,dneut
!print*,colrat(i,j,k,:,:)
!print*,Nexcite(i,j,k,:)
Nexcite(:,:,:,1:5)=Nexcite(:,:,:,1:5)+dt*dneutv(:,:,:,1:5)/n0
where (Nexcite>=0.d0)
Nexcite = Nexcite
elsewhere
Nexcite = 0.d0
end where
!print*,Nexcite(i,j,k,:)
dntotv(:,:,:)=sum(Nexcite(:,:,:,1:5),DIM=4)
Nexcite(:,:,:,1)=roh(:,:,:)*Nexcite(:,:,:,1)/dntotv(:,:,:)
Nexcite(:,:,:,2)=roh(:,:,:)*Nexcite(:,:,:,2)/dntotv(:,:,:)
Nexcite(:,:,:,3)=roh(:,:,:)*Nexcite(:,:,:,3)/dntotv(:,:,:)
Nexcite(:,:,:,4)=roh(:,:,:)*Nexcite(:,:,:,4)/dntotv(:,:,:)
Nexcite(:,:,:,5)=roh(:,:,:)*Nexcite(:,:,:,5)/dntotv(:,:,:)
! enddo;enddo;enddo
!print*,Nexcite(1,1,1,6),rom(1,1,1),sum(Nexcite(1,1,1,1:5)),roh(1,1,1)
end subroutine hydrogen_excitation_update
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine get_initial_xin(Pr_tot,Te_tot,N_tot,xi_n0)
!return initial xi_n and total number density from
! total pressure and temperature
! assumption
! -ionization equilibrium
! f(T)[f_T] is temperature dependence of ionization and recombination
! ionization rate : nu_ion(T)*n_p*n_n
! recombination rate : nu_rec(T)*n_p**3
! f(T)=nu_ion(T)/nu_rec(T)
double precision,intent(in)::Pr_tot(ix,jx,kx),Te_tot(ix,jx,kx)
double precision,intent(out)::xi_n0(ix,jx,kx),N_tot(ix,jx,kx)
double precision N_pr(ix,jx,kx),N_i(ix,jx,kx),N_n(ix,jx,kx),f_T(ix,jx,kx)
f_T=ion_temperature(Te_tot)/rec_temperature(Te_tot)
N_pr=Pr_tot/Te_tot*gm
N_i=-f_T+dsqrt(f_T*(f_T+N_pr))
N_n=N_i*N_i/f_T
N_tot=N_i+N_n
xi_n0=N_n/N_tot
end subroutine get_initial_xin
subroutine get_NT_from_PX(Pr_tot,xi_n0,N_tot,Te_tot)
!return initial temperature and total number density from
! total pressure and neutral fraction
! assumption
! -ionization equilibrium
! f(T)[f_T] is temperature dependence of ionization and recombination
! ionization rate : nu_ion(T)*n_p*n_n
! recombination rate : nu_rec(T)*n_p**3
! f(T)=nu_ion(T)/nu_rec(T)
! *** f_T must independent of temperature
double precision,intent(in)::Pr_tot(ix,jx,kx),xi_n0(ix,jx,kx)
double precision,intent(out)::N_tot(ix,jx,kx)
double precision,intent(inout)::Te_tot(ix,jx,kx)
double precision N_pr(ix,jx,kx),N_i(ix,jx,kx),N_n(ix,jx,kx),f_T(ix,jx,kx)
f_T=ion_temperature(Te_tot)/rec_temperature(Te_tot)
N_i=xi_n0/(1.0d0-xi_n0)*f_T
N_n=xi_n0/(1.0d0-xi_n0)*N_i
N_tot=N_i+N_n
Te_tot=gm*Pr_tot/(2.0d0*N_i+N_n)
end subroutine get_NT_from_PX
subroutine initialize_xin(flag_amb,flag_col)
integer,intent(inout)::flag_amb,flag_col
if (flag_amb.eq.0) return
if(flag_col.eq.0) flag_col=1
xin_type=mod((flag_amb/10),10)
flag_amb=mod(flag_amb,10)
end subroutine initialize_xin
subroutine set_xin(U_h,U_m)
double precision,intent(inout)::U_h(ix,jx,kx,nvar_h),U_m(ix,jx,kx,nvar_m)
integer i,j,k
double precision,parameter::r_x=10.0d0,r_y=10.0d0,r_z=5.0d0
double precision tmp,alpha_1,alpha_0
if(xin_type.eq.0) then
xi_n=n_fraction
elseif(xin_type.eq.1)then
alpha_0=n_fraction/(1-n_fraction)
alpha_1=1.0d0
do k=1,kx;do j=1,jx;do i=1,ix
! tmp=alpha_0+(alpha_1-alpha_0)*min(1.0d0,y(j)/r_y)
tmp=alpha_0+(alpha_1-alpha_0)*((tanh((x(i)-r_x)/2.0d0)+1.0d0)*0.5d0 &
+(1.0d0-tanh((x(i)+r_x)/2.0d0))*0.5d0)
xi_n(i,j,k)=tmp/(1.0d0+tmp)
enddo;enddo;enddo
endif
end subroutine set_xin
! subroutine source_PIP(U_h0,U_m0,U_h,U_m,dt_coll_i,dt_sub,S_h,S_m)
subroutine source_PIP(U_h0,U_m0,U_h,U_m,dt_coll_i,S_h,S_m)
double precision,intent(inout):: S_h(ix,jx,kx,nvar_h),S_m(ix,jx,kx,nvar_m)
double precision,intent(inout):: U_h(ix,jx,kx,nvar_h),U_m(ix,jx,kx,nvar_m)
double precision,intent(inout):: U_h0(ix,jx,kx,nvar_m),U_m0(ix,jx,kx,nvar_m)
double precision:: dS(ix,jx,kx,nvar_h)
! double precision, intent(inout):: dt_coll_i,dt_sub
double precision, intent(inout):: dt_coll_i
double precision temp(ix,jx,kx),te(ix,jx,kx),nte(ix,jx,kx)
double precision pr(ix,jx,kx),npr(ix,jx,kx)
double precision de(ix,jx,kx),nde(ix,jx,kx)
double precision vx(ix,jx,kx),nvx(ix,jx,kx)
double precision vy(ix,jx,kx),nvy(ix,jx,kx)
double precision vz(ix,jx,kx),nvz(ix,jx,kx)
double precision bx(ix,jx,kx),by(ix,jx,kx),bz(ix,jx,kx)
double precision kapper(ix,jx,kx),lambda(ix,jx,kx)
double precision A(ix,jx,kx),B(ix,jx,kx),D(ix,jx,kx),ion_pot(ix,jx,kx)
double precision dneut(ix,jx,kx,6)
integer i,j
dS=0.0
call cq2pv_hd(nde,nvx,nvy,nvz,npr,U_h)
call cq2pv_mhd(de,vx,vy,vz,pr,bx,by,bz,U_m)
te=pr/de*gm*mu_p
nte=npr/nde*gm*mu_n
if(flag_pip_imp.eq.1) then
temp=dt_coll_i*(u_h(:,:,:,1)+u_m(:,:,:,1))
dS(:,:,:,2)=(u_m(:,:,:,1)*u_h(:,:,:,2)-u_h(:,:,:,1)*u_m(:,:,:,2)) &
*(1.0d0-exp(-ac*temp))/temp
dS(:,:,:,3)=(u_m(:,:,:,1)*u_h(:,:,:,3)-u_h(:,:,:,1)*u_m(:,:,:,3)) &
*(1.0d0-exp(-ac*temp))/temp
dS(:,:,:,4)=(u_m(:,:,:,1)*u_h(:,:,:,4)-u_h(:,:,:,1)*u_m(:,:,:,4)) &
*(1.0d0-exp(-ac*temp))/temp
lambda=ac*(nde+de)
kapper=3.0d0*(gm-1.0d0)*ac*(mu_p*nde+mu_n*de)
B=-1.0d0/3.0d0*gm*kapper/((nde+de)*(kapper-lambda))* &
(de*((nvx-vx)*vx+(nvy-vy)*vy+(nvz-vz)*nvz)+ &
nde*((nvx-vx)*nvx+(nvy-vy)*nvy+(nvz-vz)*nvz))
D=-gm/6.0d0*kapper*(de-nde)/((de+nde)*(kapper-2*lambda))* &
((nvx-vx)**2+(nvy-vy)**2+(nvz-vz)**2)
dS(:,:,:,5)=-(3.0d0/gm)*ac*de*nde/kapper*( &
+(exp(-kapper*dt_coll_i)-1.0d0)*(nte-te) &
-(B+D)*exp(-kapper*dt_coll_i) &
+ B*exp(-lambda*dt_coll_i)+D*exp(-2.0d0*lambda*dt_coll_i))/dt_coll_i
U_h0(:,:,:,1:5)=U_h0(:,:,:,1:5)-dt_coll_i*ds(:,:,:,1:5)
U_m0(:,:,:,1:5)=U_m0(:,:,:,1:5)+dt_coll_i*ds(:,:,:,1:5)
! S_h(:,:,:,1:5)=S_h(:,:,:,1:5)-dS(:,:,:,1:5)
! S_m(:,:,:,1:5)=S_m(:,:,:,1:5)+dS(:,:,:,1:5)
else
dS(:,:,:,2)=ac*(u_m(:,:,:,1)*u_h(:,:,:,2)-u_h(:,:,:,1)*u_m(:,:,:,2))
dS(:,:,:,3)=ac*(u_m(:,:,:,1)*u_h(:,:,:,3)-u_h(:,:,:,1)*u_m(:,:,:,3))
dS(:,:,:,4)=ac*(u_m(:,:,:,1)*u_h(:,:,:,4)-u_h(:,:,:,1)*u_m(:,:,:,4))
dS(:,:,:,5)=ac*nde*de*(0.5d0*((nvx**2-vx**2)+(nvy**2-vy**2)+ &
(nvz**2-vz**2)) + 3.0d0/gm/2.0d0*(nte-te))
S_h(:,:,:,1:5)=S_h(:,:,:,1:5)-dS(:,:,:,1:5)
S_m(:,:,:,1:5)=S_m(:,:,:,1:5)+dS(:,:,:,1:5)
endif
if(IR_type.ge.1) then
ds(:,:,:,1)=Gm_rec*de-Gm_ion*nde
ds(:,:,:,2)=Gm_rec*de*vx-Gm_ion*nde*nvx
ds(:,:,:,3)=Gm_rec*de*vy-Gm_ion*nde*nvy
ds(:,:,:,4)=Gm_rec*de*vz-Gm_ion*nde*nvz
if(flag_IR_type .eq. 0) then !New formulation
ds(:,:,:,5)=0.5d0*(Gm_rec*de*(vx*vx+vy*vy+vz*vz)- &
Gm_ion*nde*(nvx*nvx+nvy*nvy+nvz*nvz)) -&
Gm_ion*npr/(gm-1.d0) + 0.5d0*Gm_rec*pr/(gm-1.d0)
S_h(:,:,:,1:5)=S_h(:,:,:,1:5)+ds(:,:,:,1:5)
S_m(:,:,:,1:5)=S_m(:,:,:,1:5)-ds(:,:,:,1:5)
ion_pot=0.0d0
if(mod(flag_col,2) .eq. 1) then
ion_pot=Gm_ion*nde*(13.6d0/gm/T0/8.6173e-5)
elseif(mod(flag_col,2) .eq. 0) then
ion_pot=Gm_ion*nde*(13.6d0*beta/T0/2.d0/8.6173e-5)
else
print*,'option not included!'
stop
endif
!print*,maxval(Gm_ion),maxval(ion_pot),maxval(abs(arb_heat))
!print*,maxval(abs(ion_pot)),maxval(abs(arb_heat)),maxval(abs(ion_pot-arb_heat))
S_m(:,:,:,5)=S_m(:,:,:,5)-ion_pot+arb_heat
! print*,'New type'
else if(flag_IR_type .eq. 1) then
ds(:,:,:,5)=0.5d0*(Gm_rec*de*(vx*vx+vy*vy+vz*vz)- &
Gm_ion*nde*(nvx*nvx+nvy*nvy+nvz*nvz)) -&
Gm_ion*npr/(gm-1.d0) + 0.5d0*Gm_rec*pr/(gm-1.d0) !Khomenko
S_h(:,:,:,1:5)=S_h(:,:,:,1:5)+ds(:,:,:,1:5)
S_m(:,:,:,1:5)=S_m(:,:,:,1:5)-ds(:,:,:,1:5)
else if(flag_IR_type .eq. 2) then
ds(:,:,:,5)=0.5d0*(Gm_rec*de*(vx*vx+vy*vy+vz*vz)- &
Gm_ion*nde*(nvx*nvx+nvy*nvy+nvz*nvz)) -&
Gm_ion*npr/(gm-1.d0) + Gm_rec*pr/(gm-1.d0) !Singh
S_h(:,:,:,1:5)=S_h(:,:,:,1:5)+ds(:,:,:,1:5)
S_m(:,:,:,1:5)=S_m(:,:,:,1:5)-ds(:,:,:,1:5)
else if(flag_IR_type .eq. 3) then
!6 level hydrogen atom
!Calculate the delta densities conserving total by omiting largest value
do i=1,6
do j=1,6
dneut(:,:,:,i)=Nexcite(:,:,:,j)*colrat(:,:,:,j,i)-Nexcite(:,:,:,i)*colrat(:,:,:,i,j)
enddo
enddo
!The source has to be calculated elsewhere though I think.
endif
endif
return
end subroutine source_PIP
end module PIP_rot