forked from AstroSnow/PIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNUwave.f90
263 lines (243 loc) · 8.79 KB
/
NUwave.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
subroutine NUwave
use parameters,only:pi
use globalvar,only:ix,jx,kx,U_h,U_m,flag_bnd,col,beta,flag_b_stg,dtout,&
flag_mhd,flag_mpi,my_rank,flag_pip,gm,beta,tend,&
x,y,z,dx,dy,dz,n_fraction,debug_option,debug_direction,flag_amb, &
flag_resi,eta_0,margin,dxc,s_order,mpi_siz,mpi_pos
use scheme_rot,only:pv2cq_mhd,pv2cq_hd
use model_rot, only:set_coordinate,setcq
implicit none
double precision :: ro_h(1:ix,1:jx,1:kx),ro_m(1:ix,1:jx,1:kx)
double precision :: vx_h(1:ix,1:jx,1:kx),vx_m(1:ix,1:jx,1:kx)
double precision :: vy_h(1:ix,1:jx,1:kx),vy_m(1:ix,1:jx,1:kx)
double precision :: vz_h(1:ix,1:jx,1:kx),vz_m(1:ix,1:jx,1:kx)
double precision :: P_h (1:ix,1:jx,1:kx),P_m (1:ix,1:jx,1:kx)
double precision :: B_x (1:ix,1:jx,1:kx)
double precision :: B_y (1:ix,1:jx,1:kx)
double precision :: B_z (1:ix,1:jx,1:kx)
double precision ::mask(ix,jx,kx)
double precision ::v_para(ix,jx,kx),v_perp(ix,jx,kx)
double precision ::b_para(ix,jx,kx),b_perp(ix,jx,kx)
double precision ::v_b_para(ix,jx,kx),b_b_para(ix,jx,kx)
double precision ::v_theta(ix,jx,kx),v_phi(ix,jx,kx)
double precision ::b_theta(ix,jx,kx),b_phi(ix,jx,kx)
double precision f_n,f_p,f_p_n,f_p_p,start(3),end(3),omega_r,omega_i,L_x
double precision amp,v_A,v_F,v_S,v_ph,B0,theta,theta_b,theta_p,phi_p,tmp,kn
integer i,j,k
!set ionization fraction-----------------
if(flag_pip.eq.0) then
f_n=1.0d0
f_p=1.0d0
f_p_n=1.0d0
f_p_p=1.0d0
else
f_n=n_fraction
f_p=1.0d0-n_fraction
f_p_n=f_n/(f_n+2.0d0*f_p)
f_p_p=2.0d0*f_p/(f_n+2.0d0*f_p)
endif
!----------------------------------------
!Set coordinate (uniform grid)--------------------------
!!set lower and upper coordinate
start(1)=-1.0d0 ;end(1)=1.0d0
start(2)=-1.0d0 ;end(2)=1.0d0
start(3)=-1.0d0 ;end(3)=1.0d0
call set_coordinate(start,end)
!---------------------------------------
!!default boundary condition----------------------
if (flag_bnd(1) .eq.-1) flag_bnd(1)=1
if (flag_bnd(2) .eq.-1) flag_bnd(2)=1
if (flag_bnd(3) .eq.-1) flag_bnd(3)=1
if (flag_bnd(4) .eq.-1) flag_bnd(4)=1
if (flag_bnd(5) .eq.-1) flag_bnd(5)=1
if (flag_bnd(6) .eq.-1) flag_bnd(6)=1
!-------------------------------------------------
!!!========================================================
!write some code to set physical variables
!set parameters----
amp=1.0d-8
B0=sqrt(2.0d0/(gm*beta))
tmp=0.0
L_x=1.0d0
if(debug_direction.eq.1) then
call set_coordinate_NUG(mpi_siz(1)*(ix-2*margin(1))+2*margin(1),&
ix,x,dx,dxc,s_order,0.0d0,0.5d0,5.0d-3,2.0d0,1.0d-1,mpi_pos(1),margin(1),1)
call set_fold_grid(ix,margin(1),x,dx,dxc,s_order)
! L_x=0.5d0*(x(ix-margin(1))+x(ix-margin(1)+1)-(x(margin(1)+1)+x(margin(1))))
! print *,dxc,dx,x
L_x=1.0d0
mask=spread(spread(2.0d0*pi*x/L_x,2,jx),3,kx)
phi_p=0.0d0
theta_p=pi/2.0d0
else if(debug_direction.eq.2) then
mask=spread(spread(pi*y,1,ix),3,kx)
phi_p=pi/2.0d0
theta_p=pi/2.0d0
else if(debug_direction.eq.3) then
mask=spread(spread(pi*z,1,jx),1,ix)
phi_p=0.0d0
theta_p=0.0d0
else if(debug_direction.eq.4) then
do k=1,kx;do j=1,jx; do i=1,ix
mask(i,j,k)=pi*(x(i)+y(j))
enddo;enddo;enddo
phi_p=pi/4.0d0
theta_p=pi/2.0d0
tmp=pi/2.0
else if(debug_direction.eq.5) then
do k=1,kx;do j=1,jx; do i=1,ix
mask(i,j,k)=pi*(x(i)+z(k))
enddo;enddo;enddo
phi_p=0.0d0
theta_p=pi/4.0d0
else if(debug_direction.eq.6) then
do k=1,kx;do j=1,jx; do i=1,ix
mask(i,j,k)=pi*(y(j)+z(k))
enddo;enddo;enddo
phi_p=pi/2.0d0
theta_p=pi/4.0d0
else if(debug_direction.eq.7) then
do k=1,kx;do j=1,jx; do i=1,ix
mask(i,j,k)=pi*(x(i)+y(j)+z(k))
enddo;enddo;enddo
phi_p=pi/4.0d0
theta_p=pi/4.0d0
endif
!------------------
if(flag_mhd.eq.0.or.debug_option.eq.0) then
v_ph=1.0d0
ro_h=f_n*(1.0d0+amp*sin(mask))
ro_m=f_p*(1.0d0+amp*sin(mask))
p_h =f_p_n*(1.0d0/gm+amp*sin(mask))
p_m =f_p_p*(1.0d0/gm+amp*sin(mask))
v_para=amp*sin(mask)
v_perp=0.0d0
vx_h=v_para*sin(theta_p)*cos(phi_p)
vx_m=v_para*sin(theta_p)*cos(phi_p)
vy_h=v_para*sin(theta_p)*sin(phi_p)
vy_m=v_para*sin(theta_p)*sin(phi_p)
vz_h=v_para*cos(theta_p)
vz_m=v_para*cos(theta_p)
B_x =0.0d0
B_y =0.0d0
B_z =0.0d0
else if(debug_option.eq.1.or.debug_option.eq.2) then
!Fast mode
if(debug_option.eq.1) then
!angle of magnetic field from propagation direction
!wave speed
theta=pi/2.0d0
v_A=B0
v_f=sqrt(0.5d0*((1.0d0+v_A**2)+ &
sqrt((1.0d0+v_A**2)**2-4.0d0*v_A**2*cos(theta)**2)))
v_s=sqrt(0.5d0*((1.0d0+v_A**2)- &
sqrt((1.0d0+v_A**2)**2-4.0d0*v_A**2*cos(theta)**2)))
v_ph=v_f
else
theta=0.0d0
v_A=B0
v_f=sqrt(0.5d0*((1.0d0+v_A**2)+ &
sqrt((1.0d0+v_A**2)**2-4.0d0*v_A**2*cos(theta)**2)))
v_s=sqrt(0.5d0*((1.0d0+v_A**2)- &
sqrt((1.0d0+v_A**2)**2-4.0d0*v_A**2*cos(theta)**2)))
v_ph=v_s
endif
ro_h=f_n*(1.0d0+amp*sin(mask))
ro_m=f_p*(1.0d0+amp*sin(mask))
p_h =f_p_n*(1.0d0/gm+amp*sin(mask))
p_m =f_p_p*(1.0d0/gm+amp*sin(mask))
! v_b_para=1.0/v_ph*amp*sin(mask)*cos(theta)
! v_perp=(v_ph**2-cos(theta)**2)/(v_ph*sin(theta))*amp*sin(mask)
! b_b_para=b0*sin(theta)+b0*v_perp*sin(theta)/v_ph
! b_perp =b0*cos(theta)-b0*v_perp*cos(theta)/v_ph
! v_para=v_b_para*cos(theta)+v_perp*sin(theta)
! v_phi=-v_b_para*sin(theta)+v_perp*cos(theta)
! v_theta=0.0
! b_para=b_b_para*cos(theta)+b_perp*sin(theta)
! b_phi=-b_b_para*sin(theta)+b_perp*cos(theta)
! b_theta=0.0
v_b_para=v_ph*amp*sin(mask)
b_b_para=B0*cos(theta)
v_perp=-(v_A*cos(theta))**2/(v_ph**2-(v_A*cos(theta))**2)*v_b_para
b_perp=B0*(sin(theta)+v_ph/(v_ph**2-(v_A*cos(theta))**2)*v_b_para)
v_para=v_b_para
b_para=b_b_para
! select case(debug_direction)
! case(5)
! v_theta=v_perp*cos(theta_p)
! v_phi =-v_perp*sin(theta_p)*sin(phi_p)
! b_theta=b_perp*cos(theta_p)
! b_phi =-b_perp*sin(theta_p)*sin(phi_p)
! case default
v_theta=v_perp*sin(tmp)
v_phi =v_perp*cos(tmp)
b_theta=b_perp*sin(tmp)
b_phi =b_perp*cos(tmp)
! end select
vx_h=v_para*sin(theta_p)*cos(phi_p)+ &
v_theta*cos(theta_p)*cos(phi_p)-v_phi*sin(phi_p)
vx_m=v_para*sin(theta_p)*cos(phi_p)+ &
v_theta*cos(theta_p)*cos(phi_p)-v_phi*sin(phi_p)
vy_h=v_para*sin(theta_p)*sin(phi_p)+ &
v_theta*cos(theta_p)*sin(phi_p)+v_phi*cos(phi_p)
vy_m=v_para*sin(theta_p)*sin(phi_p)+ &
v_theta*cos(theta_p)*sin(phi_p)+v_phi*cos(phi_p)
vz_h=v_para*cos(theta_p)-v_theta*sin(theta_p)
vz_m=v_para*cos(theta_p)-v_theta*sin(theta_p)
b_x=b_para*sin(theta_p)*cos(phi_p)+ &
b_theta*cos(theta_p)*cos(phi_p)-b_phi*sin(phi_p)
b_y=b_para*sin(theta_p)*sin(phi_p)+ &
b_theta*cos(theta_p)*sin(phi_p)+b_phi*cos(phi_p)
b_z=b_para*cos(theta_p)-b_theta*sin(theta_p)
else if(debug_option.eq.3) then
!Alfven mode (if flag_amb.eq.1 .or. flag_pip.eq.1 then
! Damping Alfven wave)
kn=pi
v_A=B0
if(flag_pip.eq.1.or.flag_amb.eq.1.or.flag_resi.eq.1) then
if (flag_resi.eq.1) then
omega_i=0.5d0*kn**2*eta_0
else
omega_i=0.5d0*kn**2*(B0**2/(col*(1.0-n_fraction)/n_fraction))
endif
if (omega_i.le. v_A*kn) then
omega_r=sqrt((v_A*kn)**2-omega_i**2)
else
omega_r=0.0d0
omega_i=omega_i+sqrt(omega_i**2-(v_A*kn)**2)
endif
else
omega_r=v_A*kn
omega_i=0.0d0
endif
v_ph=v_A
ro_h=f_n
ro_m=f_p
p_h =f_p_n*(1.0d0/gm)
p_m =f_p_p*(1.0d0/gm)
vx_h =0.0
vx_m =0.0
vy_h =0.0d0
vy_m =0.0d0
B_x =B0
B_y =0.0d0
vz_h =0.0d0
vz_m =amp*cos(mask)
print *,"OMEGA Real and Imaginary : ",omega_r,omega_i
B_z =-b0/(v_A**2*kn)*amp*(omega_r*cos(mask)+omega_i*sin(mask))
endif
if(flag_mpi.eq.0 .or.my_rank.eq.0)print *,"phase velocity=",v_ph
!!!========================================================
!convert PV2cq and set that value to global variable 'U_h' and/or 'U_m'
call setcq(ro_m,vx_m,vy_m,vz_m,p_m,B_x,B_y,B_z, &
ro_h,vx_h,vy_h,vz_h,p_h)
!---------------------------------------------------------------------
!set default output period and time duration--------------------------
if(tend.lt.0.0) then
tend=L_x*2
if(debug_option.eq.3.and.omega_R.eq.0.0)tend=3.0d0/omega_I
dtout=tend/10.0
if(flag_mpi.eq.0 .or.my_rank.eq.0) print *,"TEND",dtout,tend
endif
!---------------------------------------------------------------------
end subroutine NUwave