-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_data.py
96 lines (77 loc) · 2.58 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import os
import cv2
import random
from augment_image import aug_image
# raw_data_path: directory where the downloaded images are
# save_path: directory where the numpy images will be
raw_data_path = "data/raw_data/beach_image"
train_save_path = "data/prepared_data/train"
test_save_path = "data/prepared_data/test"
##raw_data_path = "data/raw_data"
##train_save_path = "data/prepared_data"
##test_save_path = "data/prepared_data"
# Train/Test Data split
train_percen = 0.9
files = os.listdir(raw_data_path)
random.shuffle(files)
train_files = files[: int(len(files) * train_percen)]
test_files = files[int(len(files) * train_percen) + 1:]
total_train_images = 0
total_test_images = 0
# Augment both train and test dataset by N times
augment_times = 2
input_shape = (256, 256)
# batch: each file will have N images
batch = 2000
# Dumping numpy batch images to save_path
train_dump_counter = 0
test_dump_counter = 0
def dump_numpy(data, is_train_data=True):
global train_dump_counter, test_dump_counter
random.shuffle(data)
if is_train_data:
train_dump_counter += 1
path = os.path.join(train_save_path, 'train_data_' + str(train_dump_counter))
else:
test_dump_counter += 1
path = os.path.join(test_save_path, 'test_data_' + str(test_dump_counter))
np.save(path, data)
def create_data(files_path, is_train_data=True, augment_times=augment_times):
global total_test_images, total_train_images
bulk = []
image_counter = 0
for i, file in enumerate(files_path, 1):
image_path = os.path.join(raw_data_path, file)
try:
image = cv2.imread(image_path)
image = cv2.resize(image, input_shape)
bulk.append(image)
image_counter += 1
for _ in range(augment_times):
new_image = aug_image(image)
image_counter += 1
bulk.append(new_image)
except Exception as e:
print("error: ", e)
print("file name: ", image_path)
print("Proccessed: ", image_counter)
if len(bulk) >= batch or i == len(files_path):
print("Dumping batch: ", len(bulk))
dump_numpy(bulk, is_train_data=is_train_data)
bulk = []
if is_train_data:
total_train_images += image_counter
else:
total_test_images += image_counter
# Create Train Dataset
print("CREATING TRAIN DATASET")
create_data(train_files, is_train_data=True)
# CREATE TEST DATASET
print("CREATING TEST DATASET")
create_data(test_files, is_train_data=False)
print("*"*50)
print("Data preparation completed")
print("*"*50)
print("Total train images: ", total_train_images)
print("Total test images: ", total_test_images)