-
Notifications
You must be signed in to change notification settings - Fork 37
/
Example_VINS_visual.m
153 lines (111 loc) · 4.22 KB
/
Example_VINS_visual.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
clc
clear
addpath('./g2o_files/');
addpath('./auxilliary/')
addpath('./Math/');
addpath('./Factor/');
addpath('./Geometry/');
addpath('./VINS_DataGenerator/');
load VINS_cubic3.mat
[ Graph ] = InitializeGraph;
%%% add Prior
M_initial.value = RobotState{1, 1}.pose;
M_initial.inf=100*eye(6);
[ Graph ] = AddUnaryEdge( Graph, 'PriorPose3_Factor', 'Pose3', 'pose0', M_initial );
Graph.Nodes.Pose3.Values.pose0 = RobotState{1, 1}.pose;
Measurement.value.vel = RobotState{1, 1}.velocity ;
Measurement.value.bias = [RobotState{1, 1}.ba; RobotState{1, 1}.bw];
Measurement.inf=100*eye(9);
NodeArray=cell(2,2);
NodeArray{1,1}='Velocity3'; NodeArray{1,2}='v0';
NodeArray{2,1}='IMUbias'; NodeArray{2,2}='b0';
%[ Graph ]= AddComplexEdge(Graph, 'PriorVelAndbias_Factor', NodeArray, Measurement);
% Graph.Nodes.Velocity3.Values.v0 = RobotState{1, 1}.velocity;
% Graph.Nodes.IMUbias.Values.b0 = Measurement.value.bias;
%
Measure_translation.inf=eye(6)*1e5;
T0= RobotState{1, 1}.pose; R0=T0(1:3,1:3); p0=T0(1:3,4);
T1= RobotState{1, 2}.pose; R1=T1(1:3,1:3); p1=T1(1:3,4);
Measure_translation.value=[R0'*R1 R0'*(p1-p0) ];
%[ Graph ] = AddNormalEdge( Graph, 'RelativePose3_Factor', 'Pose3', 'pose0', 'Pose3', 'pose1', Measure_translation );
%%% add IMU measurement
num_poses = 49;
for i = 0: num_poses-1
%%%%%%%% IMU part
NodeArray=cell(2,6);
NodeArray{1,1}='Pose3'; NodeArray{1,2}=['pose' num2str(i)];
NodeArray{2,1}='Velocity3'; NodeArray{2,2}=['v' num2str(i)];
NodeArray{3,1}='IMUbias'; NodeArray{3,2}=['b' num2str(i)];
NodeArray{4,1}='Pose3'; NodeArray{4,2}=['pose' num2str(i+1)];
NodeArray{5,1}='Velocity3'; NodeArray{5,2}=['v' num2str(i+1)];
NodeArray{6,1}='IMUbias'; NodeArray{6,2}=['b' num2str(i+1)];
Measurement_IMU_i = Measurement_IMU{i+1};
[ Graph ]= AddComplexEdge(Graph, 'IMU_Factor', NodeArray, Measurement_IMU_i);
NodeArray_bias{1,1}='IMUbias'; NodeArray_bias{1,2}=['b' num2str(i)];
NodeArray_bias{2,1}='IMUbias'; NodeArray_bias{2,2}=['b' num2str(i+1)];
Measurement_IMU_change.value = [];
Measurement_IMU_change.inf = IMUbiasWalk_inf;
[ Graph ]= AddComplexEdge(Graph, 'IMUbias_Factor', NodeArray_bias, Measurement_IMU_change);
Graph.Nodes.Pose3.Values.(NodeArray{1,2})=RobotState{i+1}.pose;
Graph.Nodes.Pose3.Values.(NodeArray{4,2})=RobotState{i+2}.pose;
Graph.Nodes.Velocity3.Values.(NodeArray{2,2})= RobotState{i+1}.velocity;
Graph.Nodes.Velocity3.Values.(NodeArray{5,2})= RobotState{i+2}.velocity;
end
[ Graph ] = PerformGO_DL( Graph );
% %%% add Vision measurement
i=1;
while( Measurement_Vision(i,1)<= num_poses)
NodeArray=[];
pose_id = ['pose' num2str( Measurement_Vision(i,1) )];
pose_index = Measurement_Vision(i,1);
landmark_id =['landmark' num2str( Measurement_Vision(i,2) )];
Measurement.value= (Measurement_Vision(i,3:4))' ;
depth_rough = norm(RGBD_data(i,3:5))*(1+randn*0);
%Measurement.inf= (1/depth_rough)^2*eye(2)*(525^2);
Measurement.inf=eye(3)* (180/pi)^2*10;
NodeArray{1,1}='Pose3'; NodeArray{1,2}=pose_id;
NodeArray{2,1}='Landmark3'; NodeArray{2,2}=landmark_id;
T= RobotState{pose_index+1}.pose;
f = Landmarks.(landmark_id);
R=T(1:3,1:3); t = T(1:3,4);
z=R'*(f-t);
if isfield(Graph.Nodes, 'Landmark3' )
if isfield(Graph.Nodes.Landmark3.Values, landmark_id)
kk =1 ;
else kk=0;
end
else kk=0;
end
if 1
% Measurement.inf=eye(2);
[ Graph ]= AddComplexEdge(Graph, 'VisionTest_Factor', NodeArray, Measurement);
if kk == 1
Graph.Nodes.Landmark3.Values.(landmark_id )= Landmarks.(landmark_id)+2*randn(3,1);
end
%pose = RobotState{pose_index+1}.pose;
%R = pose(1:3,1:3)*expm(skew( randn(3,1)*0.3));
%t = pose(1:3,4)+randn(3,1)*0.6;
%Graph.Nodes.Pose3.Values.(pose_id)=[ R t ];
end
i=i+1;
end
S_max= find(Measurement_Vision(:,1)== num_poses , 1, 'last' );
[ LandmarkManager ] = Fn_LandmarkManager( Measurement_Vision(1: S_max, :) );
[ Landmarks_values ] = Cal_triangulate( Graph.Nodes.Pose3.Values , LandmarkManager );
Graph.Nodes.Landmark3.Values=Landmarks_values;
subplot(3,1,1);
PlotTrajectory( Graph );
title('Odometry And Triangulate');
% load gns_Linear.mat;
% Graph.Nodes = GraphNodes;
tic
[ Graph ] = PerformGO_LM( Graph );
toc
axis([-5 5 -5 5 -5 5]*8/5)
subplot(3,1,2)
PlotTrajectory( Graph );
title('Optimization');
axis([-5 5 -5 5 -5 5]*8/5)
subplot(3,1,3)
PlotTrajectory_Ground( RobotState, num_poses );
axis([-5 5 -5 5 -5 5]*8/5)