Ideas on how to use information theory to assess models #47
Replies: 3 comments 5 replies
-
the x-axis is the difference in transfer entropy between source and target at a given time lag (here 30 minutes), this is the functional performance. The y-axis is 1-mutual information between predicted and observed target variable, this is predictive performance. It is formulated like this so that the origin represents the "ideal" location to be, where predictive performance is perfect and the transfer entropy matches that seen in the observed data. Each model choice produces a point along the curve, so it could be the inclusion of different types of process guidance, or the calibration of a parameter. They give a few conceptual curves, A is what you would ideally see, B represents a tradeoff between predictive and functional performance, C is "getting the right answer for the wrong reasons" and D is getting the "wrong answer for the right reasons". For our purposes, I think this will be really interesting, although we may not have enough model iterations to create curves like this, I can see for example COAWST model output being a point, or a few points on this diagram (depending on the inclusion of various modules) and an ML model being another set of points, and comparing where they land. One caveat, this is looking at a single source -> target relationship at a single time lag, obviously it could be done for multiple pairs and time lags but it adds more complexity. |
Beta Was this translation helpful? Give feedback.
-
For this figure the authors use a moving window to look at how air temperature affects relative humidity in combination with other variables and if it is done in a redundant way (darker colors), meaning that other variables give similar information about relative humidity or if it is done in a synergistic way (lighter colors), meaning that both variables jointly contribute information to inform relative humidity. This can be confusing to interpret, for example the biggest transfer of information in this plot is the redundant between air temperature and relative humidity, meaning much of the info in air temp is already contained within past relative humidity values? But It does reveals some interesting seasonal trends and could be used to look at flows of information during different time periods (drought, precip events etc) |
Beta Was this translation helpful? Give feedback.
-
This is a heatmap looking at the dominant time scales of interaction between various sources in a for the whole record and then in b under different wetness conditions and how they compare to the whole. The authors use the maximum mutual information across a series of time lags. I could see something like this looking at different model inputs and their relationship to the predicted variable for different sites, models, and/or time periods. |
Beta Was this translation helpful? Give feedback.
-
Using mutual information as a measure of predictive performance and transfer entropy as a measure functional performance across a range of model decisions (could be addition of process guidance, calibration of a parameter)
Using temporal information partitioning (TIPNets) to investigate the amount of information flow from dynamic features to modeled or observed output that is unique, redundant and/or synergistic with another feature. This is another way to assess feature -> target relationships and how a model represents them.
Characterizing critical time scales of influence from feature to target by assessing transfer entropy across a range of time lags. Then comparing time scales across different sites to look at how different site characteristics are associated with process coupling
Below are some more specific comments and examples for each method.
Beta Was this translation helpful? Give feedback.
All reactions