-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
289 lines (250 loc) · 11.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import yaml
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import numpy as np
import torch
import clip
# Custom Imports
from Data.utils import *
from Models.LatentBKI import *
from Models.mapping_utils import *
from Models.Lseg.Lseg_module import Lseg_module
from Models.SPVCNN.SPVCNN_module import SPVCNN_Module
# result same as train
class Results():
def __init__(self) -> None:
self.num_correct = 0
self.num_total = 0
self.all_intersections = 0
self.all_unions = 0
self.num_correct_seg = 0
self.num_total_seg = 0
self.all_intersections_seg = 0
self.all_unions_seg = 0
def save_map():
print("Saving Map ...")
features = map_object.global_map[:,3:FEATURE_SIZE+3].to(device)
if DOWN_SAMPLE_FEATURE:
features = back_project_fn(features)
labels = torch.argmax(map_object.decode(features, map_object.category_feature), dim=1, keepdim=True)
confidence = map_object.global_map[:,-1].reshape(-1,1).to(dtype=torch.float32)
global_map = torch.cat((map_object.global_map[:,:3], labels.to(torch.float32).cpu(), confidence), dim=1)
global_map = global_map.numpy()
print(global_map.shape)
np.save(os.path.join(SAVE_MAP_PATH, "global_map.npy"), global_map)
np.save(os.path.join(SAVE_MAP_PATH, "global_map_latent.npy"), map_object.global_map)
def inference(unlabeld_pc_torch_list, pred_labels_list, gt_labels_list, map_object, results, SAVE_MAP_PATH, with_variance):
# first save the points
torch.save(unlabeld_pc_torch_list, os.path.join(SAVE_MAP_PATH, "unlabeld_pc_torch_list_subsample.pt"))
torch.save(pred_labels_list, os.path.join(SAVE_MAP_PATH, "pred_labels_list_subsample.pt"))
torch.save(gt_labels_list, os.path.join(SAVE_MAP_PATH, "gt_labels_list_subsample.pt"))
print(f"Inference {current_scene} ... ")
unlabeld_pc_torch_list = unlabeld_pc_torch_list.to(device=device, non_blocking=True)
pred_labels_list = pred_labels_list.to(device=device, non_blocking=True)
gt_labels_list = gt_labels_list.to(device=device, non_blocking=True)
print(gt_labels_list.shape)
features = map_object.label_points_iterative(unlabeld_pc_torch_list, with_variance=with_variance)
print("saveing feature with shape:", features.shape)
torch.save(features.cpu(), os.path.join(SAVE_MAP_PATH, "predcited_features_subsample.pt")) # save predicted features, variance, confidence
category_pred = features[:, -1].to(torch.int64).to(device)
for i in range(map_object.num_classes):
gt_i = gt_labels_list == i
pred_bki_i = category_pred == i
pred_seg_i = pred_labels_list == i
sequence_class[i] += torch.sum(gt_i)
sequence_int_bki[i] += torch.sum(gt_i & pred_bki_i)
sequence_int_seg[i] += torch.sum(gt_i & pred_seg_i)
sequence_un_bki[i] += torch.sum(gt_i | pred_bki_i)
sequence_un_seg[i] += torch.sum(gt_i | pred_seg_i)
# accuracy
correct = torch.sum(category_pred == gt_labels_list).item()
total = gt_labels_list.shape[0]
results.num_correct += correct
results.num_total += total
# miou
inter, union = iou_one_frame(category_pred, gt_labels_list, n_classes=NUM_CLASSES)
union += 1e-6
results.all_intersections += inter
results.all_unions += union
# accuracy_seg
# TODO: remove ignore lables?
correct_seg = torch.sum(pred_labels_list == gt_labels_list).item()
total_seg = gt_labels_list.shape[0]
results.num_correct_seg += correct_seg
results.num_total_seg += total_seg
# miou_seg
inter_seg, union_seg = iou_one_frame(pred_labels_list, gt_labels_list, n_classes=NUM_CLASSES)
union_seg += 1e-6
results.all_intersections_seg += inter_seg
results.all_unions_seg += union_seg
# save statistics
print(f"{current_scene} stats:")
seq_intersections = inter[union > 0]
seq_unions = union[union > 0]
seq_miou = np.mean(seq_intersections / seq_unions)
print(f'Average map accuracy: {correct/total}')
print(f'Map miou: {seq_miou}')
seq_intersections_seg = inter_seg[union_seg > 0]
seq_unions_seg = union_seg[union_seg > 0]
seq_miou_seg = np.mean(seq_intersections_seg / seq_unions_seg)
print(f'Average segmentation network accuracy: {correct_seg/total_seg}')
print(f'Segmentation network miou: {seq_miou_seg}')
print("")
with open(os.path.join(SAVE_MAP_PATH, 'result_inference.txt'), 'w') as file:
file.write(f"{current_scene} stats:\n")
seq_intersections = inter[union > 0]
seq_unions = union[union > 0]
seq_miou = np.mean(seq_intersections / seq_unions)
file.write(f'Average map accuracy: {correct/total}\n')
file.write(f'Map miou: {seq_miou}\n')
seq_intersections_seg = inter_seg[union_seg > 0]
seq_unions_seg = union_seg[union_seg > 0]
seq_miou_seg = np.mean(seq_intersections_seg / seq_unions_seg)
file.write(f'Average segmentation network accuracy: {correct_seg/total_seg}\n')
file.write(f'Segmentation network miou: {seq_miou_seg}\n')
########################## main script ############################
MODEL_NAME = "LatentBKI_default"
# MODEL_NAME = "LatentBKI_realworld"
# MODEL_NAME = "LatentBKI_vlmap"
# MODEL_NAME = "LatentBKI_kitti"
# RESULT_SAVE = 'Results/LatentBKI_kitti_semantic_kitti_3_0.5_96_0.2_1_full_rebuttal'
# scenes = ['08']
RESULT_SAVE = '/workspace/LatentBKI_public/LatentBKI/Results/LatentBKI_default_mp3d_3_0.5_64_0.1_1_2024-12-16_11-11-52'
# scenes = ['5LpN3gDmAk7_1' , 'gTV8FGcVJC9_1', ]
scenes = ['gTV8FGcVJC9_1' ]
WITH_VARIANCE = True
DISCRETE = True
BATCH_SIZE = 100000
print("Model is:", MODEL_NAME)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("device is ", device)
print("---------------")
print("with variance: ", WITH_VARIANCE)
print("discrete_knn: ", DISCRETE)
print("result save:", RESULT_SAVE)
print("batch size:", BATCH_SIZE)
# Model Parameters
model_params_file = os.path.join(os.getcwd(), "Config", MODEL_NAME + ".yaml")
with open(model_params_file, "r") as stream:
try:
model_params = yaml.safe_load(stream)
DATASET = model_params["dataset"]
MEAS_RESULT = model_params["meas_result"]
SAVE_MAP = model_params["save_map"]
ELL = model_params["ell"]
# WITH_VARIANCE = model_params['with_variance']
USE_RELATIVE_POSE = model_params['use_relative_pose']
PSEDUO_DISCRETE = model_params['pseduo_discrete']
FILTER_SIZE = model_params["filter_size"]
GRID_PARAMS = model_params["grid_params"]
except yaml.YAMLError as exc:
print(exc)
# Data Parameters
data_params_file = os.path.join(os.getcwd(), "Config", DATASET + ".yaml")
with open(data_params_file, "r") as stream:
try:
data_params = yaml.safe_load(stream)
NUM_CLASSES = data_params["num_classes"]
DATA_DIR = data_params["data_dir"]
CATEGORY = data_params["category"]
FEATURE_DIR = data_params["feature_dir"]
FEATURE_SIZE = data_params["feature_size"]
RAW_DATA = data_params['raw_data']
DOWN_SAMPLE_FEATURE = data_params["down_sample_feature"]
PCA_PATH = data_params['pca_path']
GRID_MASK = data_params['grid_mask']
SUBSAMPLE = data_params['subsample_points']
SEQUENCES = data_params['sequences']
INTRINSIC = data_params['intrinsic']
except yaml.YAMLError as exc:
print(exc)
# PCA feature reduction functions
down_sampling_fn = None
back_project_fn = None
CATEGORY_CLIP = None
# Create segmentation module
if DATASET != 'semantic_kitti':
# clip features
clip_model, preprocess = clip.load("ViT-B/32", device=device)
text = clip.tokenize(CATEGORY).to(device)
with torch.no_grad():
text_features = clip_model.encode_text(text)
text_features = text_features.to(torch.float32)
CATEGORY_CLIP = text_features / text_features.norm(dim=-1, keepdim=True)
print(f"category_clip size: {CATEGORY_CLIP.shape}")
# lseg module
seg_module = Lseg_module(pca_path=PCA_PATH, device=device)
if DOWN_SAMPLE_FEATURE:
down_sampling_fn = seg_module.down_sampling
back_project_fn = seg_module.backproject_to_clip
else:
seg_module = SPVCNN_Module(device)
# Create map object
map_object = GlobalMapContinuous(
torch.tensor([int(p) for p in GRID_PARAMS['grid_size']], dtype=torch.long).to(device), # Grid size
torch.tensor(GRID_PARAMS['min_bound']).to(device), # Lower bound
torch.tensor(GRID_PARAMS['max_bound']).to(device), # Upper bound
FILTER_SIZE, # Filter size
decode=seg_module.decoding_feature,
pca_upsample=back_project_fn,
ell=ELL,
category_feature=CATEGORY_CLIP,
num_classes=NUM_CLASSES,
latent_dim=FEATURE_SIZE,
device=device, # Device
use_relative_pose=USE_RELATIVE_POSE,
pseduo_discrete = PSEDUO_DISCRETE
)
# result statistics
results = Results()
sequence_class = torch.zeros(map_object.num_classes, device=device)
sequence_int_bki = torch.zeros(map_object.num_classes, device=device)
sequence_int_seg = torch.zeros(map_object.num_classes, device=device)
sequence_un_bki = torch.zeros(map_object.num_classes, device=device)
sequence_un_seg = torch.zeros(map_object.num_classes, device=device)
total_t = 0.0
# Evaluation Loop
for current_scene in scenes:
# load data
print(f"Processing {current_scene}")
folder = os.path.join(RESULT_SAVE, current_scene)
unlabeld_pc_torch_list = torch.load(f"{folder}/unlabeld_pc_torch_list.pt")
pred_labels_list = torch.load(f"{folder}/pred_labels_list.pt")
gt_labels_list = torch.load(f"{folder}/gt_labels_list.pt")
map_object.global_map = torch.tensor(np.load(f"{folder}/global_map_latent.npy"), dtype=torch.float)
# TODO: Subsample eval points
print("[TEST] Subsampling points ...")
# using a subsample to calculate the statistics
np.random.seed(42) # reproducible
idx = np.random.choice(gt_labels_list.shape[0], int(gt_labels_list.shape[0]*0.1), replace=False)
gt_labels_list = gt_labels_list[idx]
pred_labels_list = pred_labels_list[idx]
unlabeld_pc_torch_list = unlabeld_pc_torch_list[idx]
# using a subsample to calculate the statistics
print(gt_labels_list.shape, pred_labels_list.shape, unlabeld_pc_torch_list.shape)
print("map shape:", map_object.global_map.shape)
SAVE_MAP_PATH = os.path.join(RESULT_SAVE, current_scene)
if not os.path.exists(SAVE_MAP_PATH):
print(SAVE_MAP_PATH)
os.makedirs(SAVE_MAP_PATH)
inference(unlabeld_pc_torch_list, pred_labels_list, gt_labels_list, map_object, results, SAVE_MAP_PATH, WITH_VARIANCE)
# Write result to file
with open(os.path.join(RESULT_SAVE, 'result_inference.txt'), 'w') as file:
file.write("Final results:\n")
file.write("Seg:\n")
for i in range(NUM_CLASSES):
file.write(f"{i}: {(sequence_int_seg[i] / sequence_un_seg[i] * 100).item()} ({sequence_int_seg[i]} / {sequence_un_seg[i]})\n")
file.write("BKI:\n")
for i in range(NUM_CLASSES):
file.write(f"{i}: {(sequence_int_bki[i] / sequence_un_bki[i] * 100).item()} ({sequence_int_bki[i]} / {sequence_un_bki[i]})\n")
file.write("Map_update statistics:\n")
all_intersections = results.all_intersections[results.all_unions > 0]
all_unions = results.all_unions[results.all_unions > 0]
all_miou = np.mean(all_intersections / all_unions)
file.write(f'Average map accuracy: {results.num_correct/results.num_total}\n')
file.write(f'Map miou: {all_miou}\n')
all_intersections_seg = results.all_intersections_seg[results.all_unions_seg > 0]
all_unions_seg = results.all_unions_seg[results.all_unions_seg > 0]
all_miou_seg = np.mean(all_intersections_seg / all_unions_seg)
file.write(f'Average segmentation network accuracy: {results.num_correct_seg/results.num_total_seg}\n')
file.write(f'Segmentation network miou: {all_miou_seg}\n')