forked from kpertsch/rlds_dataset_builder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dataset_transform.py
90 lines (81 loc) · 3.57 KB
/
test_dataset_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import importlib
import tqdm
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # suppress debug warning messages
import tensorflow as tf
import tensorflow_datasets as tfds
from example_transform.transform import transform_step
parser = argparse.ArgumentParser()
parser.add_argument('dataset_name', help='name of the dataset to visualize')
args = parser.parse_args()
TARGET_SPEC = {
'observation': {
'image': {'shape': (128, 128, 3),
'dtype': np.uint8,
'range': (0, 255)}
},
'action': {'shape': (8,),
'dtype': np.float32,
'range': [(-1, -1, -1, -2*np.pi, -2*np.pi, -2*np.pi, -1, 0),
(+1, +1, +1, +2*np.pi, +2*np.pi, +2*np.pi, +1, 1)]},
'discount': {'shape': (),
'dtype': np.float32,
'range': (0, 1)},
'reward': {'shape': (),
'dtype': np.float32,
'range': (0, 1)},
'is_first': {'shape': (),
'dtype': np.bool_,
'range': None},
'is_last': {'shape': (),
'dtype': np.bool_,
'range': None},
'is_terminal': {'shape': (),
'dtype': np.bool_,
'range': None},
'language_instruction': {'shape': (),
'dtype': str,
'range': None},
'language_embedding': {'shape': (512,),
'dtype': np.float32,
'range': None},
}
def check_elements(target, values):
"""Recursively checks that elements in `values` match the TARGET_SPEC."""
for elem in target:
if isinstance(values[elem], dict):
check_elements(target[elem], values[elem])
else:
if target[elem]['shape']:
if tuple(values[elem].shape) != target[elem]['shape']:
raise ValueError(
f"Shape of {elem} should be {target[elem]['shape']} but is {tuple(values[elem].shape)}")
if not isinstance(values[elem], bytes) and values[elem].dtype != target[elem]['dtype']:
raise ValueError(f"Dtype of {elem} should be {target[elem]['dtype']} but is {values[elem].dtype}")
if target[elem]['range'] is not None:
if isinstance(target[elem]['range'], list):
for vmin, vmax, val in zip(target[elem]['range'][0],
target[elem]['range'][1],
values[elem]):
if not (val >= vmin and val <= vmax):
raise ValueError(
f"{elem} is out of range. Should be in {target[elem]['range']} but is {values[elem]}.")
else:
if not (np.all(values[elem] >= target[elem]['range'][0])
and np.all(values[elem] <= target[elem]['range'][1])):
raise ValueError(
f"{elem} is out of range. Should be in {target[elem]['range']} but is {values[elem]}.")
# create TF dataset
dataset_name = args.dataset_name
print(f"Testing transform for dataset: {dataset_name}")
module = importlib.import_module(dataset_name)
ds = tfds.load(dataset_name, split='train')
ds = ds.shuffle(100)
for episode in tqdm.tqdm(ds.take(50)):
steps = tfds.as_numpy(episode['steps'])
for step in steps:
transformed_step = transform_step(step)
check_elements(TARGET_SPEC, transformed_step)
print("Test passed! You're ready to submit!")