-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathspec_interp.m
130 lines (102 loc) · 3.08 KB
/
spec_interp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
function hi = spec_interp(h, ni, off, f, dbg)
% SPEC_INTERP - Interpolate filter keeping spectral response consistent
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = length(h);
mult_factor = 15;
w = linspace(-pi, pi, 2*mult_factor*N);
% Try weighting samples that are in frequency band
% more heavily
%
f = f * pi;
idx_band = [];
nband = length(f)/2;
for band = 1:nband,
idx = find( (w >= f(band*2-1)) & (w <= f(band*2)) );
idx_band = [idx_band idx];
end;
wt_band = 10;
wt = ones(length(w),1);
wt(idx_band) = wt_band;
% Get reference transform
%
t_ref = [0:N-1];
Wref = exp(-i*kron(w', t_ref));
Fref = Wref * h(:);
Fref_wt = wt .* Fref;
if (dbg >= 2),
filt_fig = figure;
end;
ni_2 = floor(ni/2);
for idx = 1:ni
% Get actual sampling positions
%
t_act = t_ref + off + (idx-1)/ni;
if (dbg >= 2)
figure(filt_fig);
subplot(411);
stem([t_ref.' t_act.'], ones(length(t_ref),2));
legend('Reference', 'Actual');
title('Sampling Locations');
end;
% Get actual, add weights
%
Wact = exp(-i*kron(w', t_act));
Wact_wt = repmat(wt,1,length(t_act)) .* Wact;
% Get new filter
%
hi(idx,:) = pinv(Wact_wt)*Fref_wt;
if ( (dbg >= 2) && (rem(idx,4)==0) ),
plot_db = 0;
figure(filt_fig);
Fact = Wact * h(:);
Fact_fix = Wact * hi(idx,:).';
subplot(4,1,2);
hold off;
plot(abs(h));
hold on;
plot(abs(hi(idx)), 'r--');
title('Beta Polynomials');
subplot(4,1,3);
if plot_db,
hold off;
plot(w/pi,20*log10(abs(Fref)),'b-');
hold on;
plot(w/pi, 20*log10(abs(Fact)), 'g--');
plot(w/pi, 20*log10(abs(Fact_fix)), 'r--');
ylabel('DB Scale');
else
hold off;
plot(w/pi,abs(Fref),'b-');
hold on;
plot(w/pi, abs(Fact), 'g--');
plot(w/pi, abs(Fact_fix), 'r--');
ylabel('Linear Scale');
end;
title('Magnitude Response');
subplot(4,1,4);
hold off;
plot(w/pi,angle(Fref),'b-');
hold on;
plot(w/pi,angle(Fact),'g--');
plot(w/pi,angle(Fact_fix),'r--');
title('Phase Response');
fprintf(1,'Offset: %f -- Hit any key to continue\n', off + (idx-1)/ni);
pause;
end;
end;
hi = hi(:);
return;