-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsentiment_analyser.py
257 lines (222 loc) · 11 KB
/
sentiment_analyser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import os
import time
import scattertext as st
import spacy
nlp = spacy.load('/freetxt/en_core_web_sm-3.2.0') # Load the spaCy model
nlp.max_length = 9000000
from nltk.corpus import stopwords
import nltk
### stopwords_files
# Update with the Welsh stopwords (source: https://github.com/techiaith/ataleiriau)
en_stopwords = list(stopwords.words('english'))
cy_stopwords = open('/freetxt/website/data/welsh_stopwords.txt', 'r', encoding='iso-8859-1').read().split('\n') # replaced 'utf8' with 'iso-8859-1'
STOPWORDS = set(en_stopwords + cy_stopwords)
PUNCS = '''!→()-[]{};:'"\,<>?@#$%^&*_~'''
class SentimentAnalyser:
"""
A class for performing sentiment analysis on textual data using pre-trained BERT models.
Methods:
preprocess_text(text): Preprocesses the text for sentiment analysis.
analyse_sentiment(input_text, language, num_classes, max_seq_len=512): Analyzes the sentiment of the input text.
generate_scattertext_visualization(dfanalysis, language): Generates a scattertext visualization for the sentiment analysis results.
"""
def __init__(self):
"""
Initializes the SentimentAnalyser class, loading the tokenizer and model for sentiment analysis.
"""
# Loading tokenizer and model during initialization to avoid doing it multiple times.
self.tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
self.model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
def preprocess_text(self,text):
# remove URLs, mentions, and hashtags
text = re.sub(r"http\S+|@\S+|#\S+", "", text)
# remove punctuation and convert to lowercase
text = re.sub(f"[{re.escape(''.join(PUNCS))}]", "", text.lower())
# remove stopwords
text = " ".join(word for word in text.split() if word not in STOPWORDS)
return text
def analyse_sentiment(self, input_text, language,num_classes, max_seq_len=512):
# Split the input text into separate reviews
print(num_classes)
reviews = input_text
print(reviews)
print(language)
# Initialize sentiment counters based on num_classes
if int(num_classes) == 3:
if language == 'en':
sentiment_counts = {'Negative': 0, 'Neutral': 0, 'Positive': 0}
elif language == 'cy':
sentiment_counts = {'Negyddol': 0, 'Niwtral': 0, 'Cadarnhaol': 0}
else: # num_classes == 5
if language == 'en':
sentiment_counts = {'Very negative': 0, 'Negative': 0, 'Neutral': 0, 'Positive': 0, 'Very positive': 0}
elif language == 'cy':
sentiment_counts = {'Negyddol Iawn': 0, 'Negyddol': 0, 'Niwtral': 0, 'Cadarnhaol': 0, 'Cadarnhaol Iawn': 0}
# Predict sentiment for each review
# Sentiment labels for 5 classes
if language == 'en':
sentiment_labels = ['Very negative', 'Negative', 'Neutral', 'Positive', 'Very positive']
elif language == 'cy':
sentiment_labels = ['Negyddol Iawn', 'Negyddol', 'Niwtral', 'Cadarnhaol', 'Cadarnhaol Iawn']
# Predict sentiment for each review
sentiments = []
for review in reviews:
original_review = review
review = self.preprocess_text(review)
if review:
# Tokenize the review
tokens = self.tokenizer.encode(review, add_special_tokens=True, truncation=True)
# If the token length exceeds the maximum, split into smaller chunks
token_chunks = []
if len(tokens) > max_seq_len:
token_chunks = [tokens[i:i + max_seq_len] for i in range(0, len(tokens), max_seq_len)]
else:
token_chunks.append(tokens)
# Process each chunk
sentiment_scores = []
for token_chunk in token_chunks:
input_ids = torch.tensor([token_chunk])
attention_mask = torch.tensor([[1] * len(token_chunk)])
# Run the model
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
scores = outputs.logits.softmax(dim=1).detach().numpy()[0]
sentiment_scores.append(scores)
# Aggregate the scores
avg_scores = np.mean(sentiment_scores, axis=0)
sentiment_index = avg_scores.argmax()
# Handle sentiment categorization based on number of classes
if int(num_classes) == 3:
if language == 'en':
sentiment_labels_3 = ['Negative', 'Neutral', 'Positive']
elif language == 'cy':
sentiment_labels_3 = ['Negyddol', 'Niwtral', 'Cadarnhaol']
if sentiment_index < 2:
sentiment_label = sentiment_labels_3[0] # Negative
elif sentiment_index > 2:
sentiment_label = sentiment_labels_3[2] # Positive
else:
sentiment_label = sentiment_labels_3[1] # Neutral
else: # num_classes == 5
sentiment_label = sentiment_labels[sentiment_index]
sentiment_score = float(format(avg_scores[sentiment_index], ".2f"))
sentiments.append((original_review, sentiment_label, sentiment_score))
sentiment_counts[sentiment_label] += 1
#print(sentiment_counts)
return sentiments, sentiment_counts
def generate_scattertext_visualization(self, dfanalysis,language):
# Get the DataFrame with sentiment analysis results
df = dfanalysis
positive_label = "Cadarnhaol" if language == 'cy' else "Positive"
if positive_label not in dfanalysis['Sentiment Label'].unique():
# Notify the user that the 'Positive' category is not present
# This could be a return statement, raising an exception,
return f"No data for the '{positive_label}' category found. Scattertext visualization cannot be generated."
# Parse the text using spaCy
df['ParsedReview'] = df['Review'].apply(nlp)
corpus = st.CorpusFromParsedDocuments(
df,
category_col="Sentiment Label",
parsed_col="ParsedReview"
).build()
term_scorer = st.RankDifference()
## # Determine which text to use based on the selected language
visualisation_text_en = "Visualisation by"
visualisation_text_cy = "Gweledigaeth gan"
if language == 'en':
visualisation_text = visualisation_text_en
elif language == 'cy':
visualisation_text = visualisation_text_cy
if language == 'en':
html = st.produce_scattertext_explorer(
corpus,
category="Positive",
category_name="Positive",
not_category_name='Negative_and_Neutral',
not_categories=df["Sentiment Label"].unique().tolist(),
minimum_term_frequency=5,
pmi_threshold_coefficient=5,
width_in_pixels=900,
metadata=df["Sentiment Label"],
term_scorer=term_scorer
)
elif language == 'cy':
html = st.produce_scattertext_explorer(
corpus,
category="Cadarnhaol",
category_name="Cadarnhaol",
not_category_name='Negyddol_a_Niwtral',
not_categories=df["Sentiment Label"].unique().tolist(),
minimum_term_frequency=5,
pmi_threshold_coefficient=5,
width_in_pixels=900,
metadata=df["Sentiment Label"],
term_scorer=term_scorer
)
html = html.replace('Frequent', 'Aml')
html = html.replace('Average', 'Cyfartalog')
html = html.replace('Infrequent', 'Anaml')
html = html.replace('Negative_and_Neutral Frequency', 'Amlder Negyddol_a_Niwtral')
html = html.replace('document count', 'cyfrif y ddogfen')
html = html.replace('word count', 'cyfrif geiriau')
html = html.replace('document count', 'cyfrif y ddogfen')
html = html.replace('Frequency', 'Amlder')
html = html.replace('Top', 'Uchaf')
html = html.replace('Characteristic', 'Nodweddion')
html = html.replace('Search the chart', 'Chwilio’r siart')
html = html.replace('per', 'fesul')
html = html.replace('words', 'gair')
html = html.replace('score', 'sgôr')
html = html.replace('frequency','amlder')
html = html.replace('terms','termau')
html = html.replace('docs','dogfennau')
html = html.replace('documents','dogfennau')
html = html.replace('Not found in any','Heb ei g/eu canfod o gwbl')
html = html.replace('Some of the','Rhai o’r')
html = html.replace('mentions','crybwylliadau')
timestamp = int(time.time())
# Constructing the file path
filename = os.path.join("/freetxt/website/static/wordcloud", f"scattertext_visualization_{timestamp}.html")
with open(filename, "w", encoding='utf-8') as f:
f.write(html)
f.close()
addition = f"""
<div style="text-align:center; margin-top:30px;">
{visualisation_text} <img src="https://ucrel-freetxt-2.lancs.ac.uk/static/images/logo.png" alt="Logo" style="height:40px;">
</div>
"""
html += addition
filename_logo = os.path.join("/freetxt/website/static/wordcloud", f"scattertext_visualization_{timestamp}_logo.html")
# Saving the updated HTML content to the file with UTF-8 encoding
with open(filename_logo, "w", encoding='utf-8') as f_logo:
f_logo.write(html)
f_logo.close()
# Returning the relative path for web access
return f"static/wordcloud/scattertext_visualization_{timestamp}.html"
def wrap_html_content(file_name):
# Step 1: Read the File
with open(file_name, 'r', encoding='utf-8') as file:
content = file.read()
# Step 2: Wrap Content
wrapped_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Wrapped Content</title>
</head>
<body>
{content}
</body>
</html>
"""
# Step 3: Save to New File
output_file_name = file_name
with open(output_file_name, 'w', encoding='utf-8') as file:
file.write(wrapped_content)
#print(f"Content wrapped and saved to {output_file_name}")
return output_file_name