
Projet TuxML
Manuel de reprise de code

ISTIC - Université de Rennes 1

Valentin PETIT Julien ROYON CHALENDARD
Cyril HAMON Paul SAFFRAY Michaël PICARD
Malo POLES Luis THOMAS Alexis BONNET

Encadrés par Mathieu ACHER

Lundi 22 Avril 2019

Ce rapport sera en Anglais, étant donné que son contenu sera aussi disponible
sur le dépôt git du projet.

This report will be in English, since its content will also be available on
the git project repository.

Table of Contents
1 Project overview 3

1.1 Project division . 3
1.2 Docker usage . 3

1.2.1 What is Docker? . 3
1.2.2 Why are we using it? . 3
1.2.3 How it can be used, how do we use it? 4
1.2.4 Some word about our docker images 4

2 Outside the box 5
2.1 kernel_generator.py . 5
2.2 docker_image_tuxml.py . 5
2.3 Database . 6

3 Inside the box 7
3.1 Docker image modularity . 7
3.2 Image content : compilation . 7
3.3 Image content : test . 8

4 Miscellaneous : others things about the project 9
4.1 Old files . 9
4.2 Utilities script . 9
4.3 Study of Linux options and config file 9

4.3.1 Randconfig . 9
4.3.2 Kconfiglib . 9

4.4 Incremental compilation . 10
4.5 Going further . 10

1 Project overview

1.1 Project division
The project is separated in 3 part :

• outside the box : project’s entries points and exit points

• inside the box : project docker image

• research and analysis script

Each of them have their dedicated part in this report.
This division can be seen at the root of the git repository, since the root content
is four directory (compilation, docker_management, miscellaneous and tests), a
python script (kernel_generator.py), a README.md and a LICENSE file.

1.2 Docker usage
1.2.1 What is Docker?

Quoting opensource.com :

"Docker is a tool designed to make it easier to create, deploy, and
run applications by using containers. Containers allow a developer
to package up an application with all of the parts it needs, such as
libraries and other dependencies, and ship it all out as one package.
By doing so, thanks to the container, the developer can rest assured
that the application will run on any other Linux machine regardless
of any customized settings that machine might have that could differ
from the machine used for writing and testing the code.
In a way, Docker is a bit like a virtual machine. But unlike a vir-
tual machine, rather than creating a whole virtual operating system,
Docker allows applications to use the same Linux kernel as the sys-
tem that they’re running on and only requires applications be shipped
with things not already running on the host computer. This gives a
significant performance boost and reduces the size of the application."

1.2.2 Why are we using it?

In this project, it was mandatory to have a working environment which
is controlled, stable and portable, while separating all the content of the project
from the user environment. For this, we were in need of a virtual machine, but
since a virtual machine is too cumbersome to use, we have chosen to use docker.

3

1.2.3 How it can be used, how do we use it?

Docker can be used as a command line application or with a Python API.
Right now, we are using it as a command line application, but it could be changed
to be used with the Python API later. Docker works with a set of images, who can
be run inside a container. These images can be built with a Dockerfile or pulled
from a distant Docker repository.

Each image can be differentiated by its name, its tag, its id or, when pulled
from a repository, its digest, which is very useful for this project.

About the command, you can check the Docker documentation. If you
don’t do more than modifying the docker image content, all you need to know is
how it is built and let our convenience script do the work.

1.2.4 Some word about our docker images

To begin, in the project the images are separated into 2 categories : the
prod(uction) images and the dev(elopment) images. As their category says, the
prod images are the latest stable images that can be used by the user, and they
can be recognized by their tag which begins with prod. At the same time, the
dev images are the latest image versions, but they can be unstable. As the prod
image, you can recognized them with the dev tag.

In order to respond to some
problematics (size, re-usability, main-
tainability, stability), a ready to run
image of the project, is a layered struc-
ture of some images that you can see in
the schema beside.

The tartuxml image is the one
downloaded by the user, no matter the
prod or dev tag. Afterward, each user
will locally build the tuxml image with
the corresponding tag, by decompress-
ing the tartuxml image content. The
decompression is simple and the same
for every version of the image.

The user can afterward add an
additional layer to replace the linux
kernel with another version. In this
case, the tag will be the old tag (dev or prod) follow by -v and the version. For
example, with the 4.20.1 version and dev image, the tag will be dev-v4.20.1 .

4

2 Outside the box

2.1 kernel_generator.py
This script is the principal entry point of the project, the standalone script

which is downloaded by each user to run compilation and test. So, its goal is to
manage everything for the user, from fetching the docker image to run a bunch of
them and give a feedback. We will only provide the simplified activity diagram
of this script, since its use is already presented in the User Manual and since it’s
enough to grasp how it works. For more, we invite you to read it and read some
reports about it, that you can find in the project’s wiki.

2.2 docker_image_tuxml.py
This script’s goal is to provide

an easier way to produce the docker im-
age for the project while having the less
possible knowledge of how to use docker
or build an image.
So its workflow is pretty simple, as pre-
sented beside.
Thanks to that, its available command
line arguments are also pretty self-
explained, as you can see below.

$./docker_management/docker_image_tuxml.py --help
usage: docker_image_tuxml.py [-h] [-p] [-t TAG] [-d DEPENDENCIES] [-f]

[-l LOCATION] [-u]

5

optional arguments:
-h, --help show this help message and exit
-p, --push Push the image on the distant repository
-t TAG, --tag TAG Tag of the image you want to generate/build/push/pull.

Default to "dev"
-d DEPENDENCIES, --dependencies DEPENDENCIES

Dependencies you want to add to your docker image when
you generate your dockerfile

-f, --full_rebuild Force the rebuild of the core system image, which is
not needed in most of the case.

-l LOCATION, --location LOCATION
Where you want to create your directory to
generate/build. Default is current

-u, --update Download the image from the repository

When building a new functionality, the task list is :

1. Modify Dockerfile content or embedded python file.

2. Build the image by running : $./docker_image_tuxml.py

3. Check if the functionnality is working without impacting others.

4. If yes, to push the image, run : $./docker_image_tuxml.py -p

2.3 Database

The database goal is to collect
all the results of the compilations, and
make them accessible to the user. This
database design is a new one, which ex-
ists alongside the old one, and which
emphasizes on size, re-usability and ex-
tensibility.

For more, check our report
about the database in the project’s
wiki.

6

3 Inside the box

3.1 Docker image modularity
Along with the command line argument given with kernel_generator.py,

the image has its own modularity :

• settings.py file, which contains practically every specific hard coded values
used in the project. This file is located inside the compilation directory,
which will be presented in the next section.

• kernel_version.txt file, which provides the version value of the kernel that
the image will compile. The path to the uncompressed kernel directory is
calculated according to this file content.

• dependencies.txt file, which gives the basic installed dependencies inside the
image. Its content is loaded when starting a compilation.

• function and constructor parameters are at the most basic level, which per-
mits a lot of modularity and reusability in order to reuse function or object
for future goal.

3.2 Image content : compilation
The compilation directory is a fine group of scripts who work together to

achieve the same goal : compile kernel and retrieve data on it. So, each script
responds to a need or a goal :

• main.py : this is the entry point script, the one called outside the compiler
to run the image. Its goal is to pull everything together and make it work
as a whole while being simple enough to be understood without looking at
every others scripts.

• logger.py : this script provides a logger object, which goal is to manage every
single output of data inside the project, in order to produce the logs files and
provide to the user some information on the execution progress.

• package_manager.py : this script provides an object whose goal is to manage
every single system package needed to compile the image. At building, it
contains all the installed packages when building the docker image.

• environment.py : this script provides utility functions to retrieve data about
the environment. You will retrieve a dictionary containing all the hardware
and software data thanks to it.

7

• configuration.py : this script is here to provide utility functions to list all the
specific attributes of this run. They can be retrieved from environment or
passed and analyzed from function parameter (retrieved from the main.py
command line argument, for example).

• compiler.py : this script provides an object whose goal is to wrap every
function related to the compilation of the kernel, from the config generation
to the retrieving of the result.

• boot_checker.py : as the compiler script, this script provides an object to
wrap every function related to the boot of a compiled kernel.

• database_management.py : this script provides utility functions to make
communication with the database easier.

There are also some settings files : the settings.py file presented before, along with
the tuxml.config and x64.config files, which serve as a base to make (respectively)
a random or a tiny linux config file to compile.

3.3 Image content : test
Before even going to write some tests and think about them, we have to

understand one important thing : in this project, we can’t test every single part
of the project, as we can’t compile every single possible linux configuration.

So, for example, we can test every way of generating a config file, but we can’t
try to compile them, neither boot the compiled kernel that can be build. Also,
you have to take care about concurrent access and system available space when
testing.

Keeping this in mind, the tests directory contains scripts which are closely
related to a script present in the compilation directory. In fact, their name is the
tested script file, preceded by "test_". For, example we have a "test_environment.py".

So, we have scripts, that are completed or should be, which test the logger,
the environment, the configuration, the compiler and the boot_checker scripts,
while we can’t test the database_management script, nor the package_manager
script (in fact, we could check if the creation of the package manager object is
successful or not).

8

4 Miscellaneous : others things about the project
In this part, we will present some of the other subjects that you could

study outside of the actual development of the image. If some file code is used, it
will be found inside the miscellaneous directory.

4.1 Old files
Some of the files are leftover of the old team work, which are left to provide

information or code about old behaviour or research done.

4.2 Utilities script
Some utility scripts are present, to help us while developping.

• refactoring_test.py : this script goal is to fetch some old result from the
old database, recompile the selected config and compare the result. It made
us able to automate the test of the refactoring while populating the new
database.

• log_decoder.py : this script goal is to make easier for a developer to decode
a longblob file extracted from the database.

4.3 Study of Linux options and config file
Every script of this part is located in the specialconfig directory.

4.3.1 Randconfig

In order to fill the data set in the database, we need to provide a lot
of different config files. Since, we can’t create each config by hand, we use the
randconfig option of the linux kernel Makefile. This method will set each option
of a config file randomly, except the one that we preset. In other words, it’s a
random autocompletion tool.

The kconfig_checker.py was heavily used to refine our preset and check
the good behaviour of randconfig.

4.3.2 Kconfiglib

During the project, a very large number of configurations were added
to the database to analyze them and allow our Machine Learning algorithm to
learn the behavior of these configurations. We needed a tool that would allow

9

us to manage Kconfig, the configuration file or generate configurations (mainly a
randconfig) and maybe even assist the configuration process or the extraction of
dependencies/options information.

We think that Kconfiglib could allow us to manage and master Kconfig
and the configuration files. We first used Kconfiglib to know the real number
of options present in a linux kernel for all supported architectures and see their
evolution according to the updates of the linux kernel (v4-0-1 to v4-20-1). In a
second step, we tried to find out what was the purpose of certain options in order
to know their importance and the impact they could have on a configuration.

We created 2 scripts using Kconfiglib, the documention of the use of Kcon-
figlib and scripts is here miscellaneous/specialconfig/Kconfiglib/README.md.

count_options.py :
The script miscellaneous/special_config/Kconfiglib/count_options.py is

used to count the options of a specific kernel version. Kconfiglib upon execution
generates a tree of the options in the kconfig files, the script then goes through
every node of this tree and checks if the node is an option. This script was heavily
used to create several histograms that represent the evolution of kernel’s options
according to the architecture.

get_option_prompt.py :
The script miscellaneous/special_config/Kconfiglib/get_option_prompt.py

is used to prompt on the standard output the help section of an option of a kconfig
file. The option should be written inside the script for now, in uppercase. As this
script was written at the end of the project it can be greatly improved and might
be a good entry point to grasp how kconfiglib and kconfig files work.

4.4 Incremental compilation
This is a whole field of research, to see the impact of compiling a slightly

different Linux config file with the old leftover of previous compilation. The study
measures differences in compilation time and kernel usability, while providing piece
of data on each option’s effect on Linux kernel compilation. Note that by kernel
usability, we speak about the capacity of the kernel to run, since it looks like an
incremental compilation sometimes break the kernel and made it unable to be run,
while it would have been possible from scratch.

4.5 Going further
In order to go further, we strongly advise to read the whole project wiki

to have a better grasp on all the project entity.

10

	Project overview
	Project division
	Docker usage
	What is Docker?
	Why are we using it?
	How it can be used, how do we use it?
	Some word about our docker images

	Outside the box
	kernel_generator.py
	docker_image_tuxml.py
	Database

	Inside the box
	Docker image modularity
	Image content : compilation
	Image content : test

	Miscellaneous : others things about the project
	Old files
	Utilities script
	Study of Linux options and config file
	Randconfig
	Kconfiglib

	Incremental compilation
	Going further

