From 1fb8895aba9de37be6d673649d627e00fd8c6869 Mon Sep 17 00:00:00 2001 From: Penelope Yong Date: Fri, 30 Aug 2024 23:15:09 +0100 Subject: [PATCH] Expand 'Getting Started' page - Bump the minimum version of Julia. - Explain the significance of parameters to @model function. - Explain how to obtain the actual samples in the chain. - Expand on the maths involved in the analytical posterior calculation (otherwise, to someone who hasn't seen it before, the formulas look too magic). --- tutorials/docs-00-getting-started/index.qmd | 119 ++++++++++++++------ 1 file changed, 86 insertions(+), 33 deletions(-) diff --git a/tutorials/docs-00-getting-started/index.qmd b/tutorials/docs-00-getting-started/index.qmd index 17197f977..f2d949345 100644 --- a/tutorials/docs-00-getting-started/index.qmd +++ b/tutorials/docs-00-getting-started/index.qmd @@ -16,13 +16,9 @@ Pkg.instantiate(); To use Turing, you need to install Julia first and then install Turing. -### Install Julia +You will need to install Julia 1.7 or greater, which you can get from [the official Julia website](http://julialang.org/downloads/). -You will need to install Julia 1.3 or greater, which you can get from [the official Julia website](http://julialang.org/downloads/). - -### Install Turing.jl - -Turing is an officially registered Julia package, so you can install a stable version of Turing by running the following in the Julia REPL: +Turing is officially registered in the [Julia General package registry](https://github.com/JuliaRegistries/General), which means that you can install a stable version of Turing by running the following in the Julia REPL: ```{julia} #| output: false @@ -30,82 +26,139 @@ using Pkg Pkg.add("Turing") ``` -You can check if all tests pass by running `Pkg.test("Turing")` (it might take a long time) +### Example usage -### Example +Here is a simple example showing Turing in action. -Here's a simple example showing Turing in action. - -First, we can load the Turing and StatsPlots modules +First, we load the Turing and StatsPlots modules. +The latter is required for visualising the results. ```{julia} using Turing using StatsPlots ``` -Then, we define a simple Normal model with unknown mean and variance +Then, we define a simple Normal model with unknown mean and variance. +Here, both `x` and `y` are observed values (since they are function parameters), whereas `m` and `s²` are the parameters to be inferred. ```{julia} @model function gdemo(x, y) s² ~ InverseGamma(2, 3) m ~ Normal(0, sqrt(s²)) x ~ Normal(m, sqrt(s²)) - return y ~ Normal(m, sqrt(s²)) + y ~ Normal(m, sqrt(s²)) end ``` -Then we can run a sampler to collect results. In this case, it is a Hamiltonian Monte Carlo sampler +Suppose we have some data `x` and `y` that we want to infer the mean and variance for. +We can pass these data as arguments to the `gdemo` function, and run a sampler to collect the results. +In this specific example, we collect 1000 samples using the No U-Turn Sampler (NUTS) algorithm, which is a Hamiltonian Monte Carlo method. ```{julia} chn = sample(gdemo(1.5, 2), NUTS(), 1000, progress=false) ``` -We can plot the results +We can plot the results: ```{julia} plot(chn) ``` -In this case, because we use the normal-inverse gamma distribution as a conjugate prior, we can compute its updated mean as follows: +and obtain summary statistics by indexing the chain: + +```{julia} +mean(chn[:m]), mean(chn[:s²]) +``` + + +### Verifying the results + +To verify the results of this example, we can analytically solve for the posterior distribution. +Our prior is a normal-inverse gamma distribution: + +$$\begin{align} + P(s^2) &= \Gamma^{-1}(s^2 | \alpha = 2, \beta = 3) \\ + P(m) &= \mathcal{N}(m | \mu = 0, \sigma^2 = s^2) \\ +\implies P(m, s^2) &= \text{N-}\Gamma^{-1}(m, s^2 | \mu = 0, \lambda = 1, \alpha = 2, \beta = 3). +\end{align}$$ + +This is a conjugate prior for a normal distribution with unknown mean and variance. +So, the posterior distribution given some data $\mathbf{x}$ is also a normal-inverse gamma distribution, which we can compute analytically: + +$$P(m, s^2 | \mathbf{x}) = \text{N-}\Gamma^{-1}(m, s^2 | \mu', \lambda', \alpha', \beta').$$ + +The four updated parameters are given respectively (see for example [Wikipedia](https://en.wikipedia.org/wiki/Normal-gamma_distribution#Posterior_distribution_of_the_parameters)) by + +$$\begin{align} +\mu' &= \frac{\lambda\mu + n\bar{x}}{\lambda + n}; & +\lambda' &= \lambda + n; \\[0.3cm] +\alpha' &= \alpha + \frac{n}{2}; & +\beta' &= \beta + \frac{1}{2}\left(nv + \frac{\lambda n(\bar{x} - \mu)^2}{\lambda + n}\right), +\end{align}$$ + +where $n$ is the number of data points, $\bar{x}$ the mean of the data, and $v$ the uncorrected sample variance of the data. ```{julia} s² = InverseGamma(2, 3) -m = Normal(0, 1) +α, β = shape(s²), scale(s²) + +# We defined m ~ Normal(0, sqrt(s²)), and the normal-inverse gamma +# distribution is defined by m ~ Normal(µ, sqrt(s²/λ)), which lets +# us identify the following +µ, λ = 0, 1 + data = [1.5, 2] x_bar = mean(data) -N = length(data) +n = length(data) +v = var(data; corrected=false) + +µ´ = ((λ * µ) + (n * x_bar)) / (λ + n) +λ´ = λ + n +α´ = α + n / 2 +β´ = β + ((n * v) + ((λ * n * (x_bar - µ)^2) / (λ + n))) / 2 -mean_exp = (m.σ * m.μ + N * x_bar) / (m.σ + N) +(µ´, λ´, α´, β´) ``` -We can also compute the updated variance +We can use these to analytically calculate, for example, the expectation values of the mean and variance parameters in the posterior distribution: $E[m] = \mu'$, and $E[s^2] = \beta'/(\alpha + - 1)$. ```{julia} -updated_alpha = shape(s²) + (N / 2) -updated_beta = - scale(s²) + - (1 / 2) * sum((data[n] - x_bar)^2 for n in 1:N) + - (N * m.σ) / (N + m.σ) * ((x_bar)^2) / 2 -variance_exp = updated_beta / (updated_alpha - 1) +mean_exp = µ´ +variance_exp = β´ / (α´ - 1) + +(mean_exp, variance_exp) ``` -Finally, we can check if these expectations align with our HMC approximations from earlier. We can compute samples from a normal-inverse gamma following the equations given [here](https://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution#Generating_normal-inverse-gamma_random_variates). +Alternatively, we can compare the two distributions visually (one parameter at a time). +To do so, we will directly sample from the analytical posterior distribution using the procedure described in [Wikipedia](https://en.wikipedia.org/wiki/Normal-inverse-gamma_distribution#Generating_normal-inverse-gamma_random_variates). ```{julia} -function sample_posterior(alpha, beta, mean, lambda, iterations) +function sample_posterior_analytic(µ´, λ´, α´, β´, iterations) samples = [] for i in 1:iterations - sample_variance = rand(InverseGamma(alpha, beta), 1) - sample_x = rand(Normal(mean, sqrt(sample_variance[1]) / lambda), 1) - samples = append!(samples, sample_x) + sampled_s² = rand(InverseGamma(α´, β')) + sampled_m = rand(Normal(µ´, sqrt(sampled_s² / λ´))) + samples = push!(samples, (sampled_m, sampled_s²)) end return samples end -analytical_samples = sample_posterior(updated_alpha, updated_beta, mean_exp, 2, 1000); +analytical_samples = sample_posterior_analytic(µ´, λ´, α´, β´, 1000); ``` +Comparing the distribution of the mean: + ```{julia} -density(analytical_samples; label="Posterior (Analytical)") +density([s[1] for s in analytical_samples]; label="Posterior (Analytical)") density!(chn[:m]; label="Posterior (HMC)") ``` + +and the distribution of the variance: + +```{julia} +density([s[2] for s in analytical_samples]; label="Posterior (Analytical)") +density!(chn[:s²]; label="Posterior (HMC)") +``` + +we see that our HMC sampler has given us a good representation of the posterior distribution.