Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix avoid re-defining the differentiation objective to support AD pre-compilation #66

Merged
merged 5 commits into from
Jun 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions ext/AdvancedVIBijectorsExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@ function AdvancedVI.reparam_with_entropy(
n_samples::Int,
ent_est ::AdvancedVI.AbstractEntropyEstimator
)
transform = q.transform
q_unconst = q.dist
q_unconst_stop = q_stop.dist
transform = q.transform
q_unconst = q.dist
q_unconst_stop = q_stop.dist

# Draw samples and compute entropy of the uncontrained distribution
unconstr_samples, unconst_entropy = AdvancedVI.reparam_with_entropy(
Expand Down
23 changes: 18 additions & 5 deletions ext/AdvancedVIForwardDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,16 +14,29 @@ end
getchunksize(::ADTypes.AutoForwardDiff{chunksize}) where {chunksize} = chunksize

function AdvancedVI.value_and_gradient!(
ad::ADTypes.AutoForwardDiff, f, θ::AbstractVector{T}, out::DiffResults.MutableDiffResult
) where {T<:Real}
ad ::ADTypes.AutoForwardDiff,
f,
x ::AbstractVector{<:Real},
out::DiffResults.MutableDiffResult
)
chunk_size = getchunksize(ad)
config = if isnothing(chunk_size)
ForwardDiff.GradientConfig(f, θ)
ForwardDiff.GradientConfig(f, x)
else
ForwardDiff.GradientConfig(f, θ, ForwardDiff.Chunk(length(θ), chunk_size))
ForwardDiff.GradientConfig(f, x, ForwardDiff.Chunk(length(x), chunk_size))
end
ForwardDiff.gradient!(out, f, θ, config)
ForwardDiff.gradient!(out, f, x, config)
return out
end

function AdvancedVI.value_and_gradient!(
ad ::ADTypes.AutoForwardDiff,
f,
x ::AbstractVector,
aux,
out::DiffResults.MutableDiffResult
)
AdvancedVI.value_and_gradient!(ad, x′ -> f(x′, aux), x, out)
end

end
19 changes: 16 additions & 3 deletions ext/AdvancedVIReverseDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,24 @@ end

# ReverseDiff without compiled tape
function AdvancedVI.value_and_gradient!(
ad::ADTypes.AutoReverseDiff, f, θ::AbstractVector{<:Real}, out::DiffResults.MutableDiffResult
ad::ADTypes.AutoReverseDiff,
f,
x::AbstractVector{<:Real},
out::DiffResults.MutableDiffResult
)
tp = ReverseDiff.GradientTape(f, θ)
ReverseDiff.gradient!(out, tp, θ)
tp = ReverseDiff.GradientTape(f, x)
ReverseDiff.gradient!(out, tp, x)
return out
end

function AdvancedVI.value_and_gradient!(
ad::ADTypes.AutoReverseDiff,
f,
x::AbstractVector{<:Real},
aux,
out::DiffResults.MutableDiffResult
)
AdvancedVI.value_and_gradient!(ad, x′ -> f(x′, aux), x, out)
end

end
23 changes: 19 additions & 4 deletions ext/AdvancedVIZygoteExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,36 @@ module AdvancedVIZygoteExt
if isdefined(Base, :get_extension)
using AdvancedVI
using AdvancedVI: ADTypes, DiffResults
using ChainRulesCore
using Zygote
else
using ..AdvancedVI
using ..AdvancedVI: ADTypes, DiffResults
using ..ChainRulesCore
using ..Zygote
end

function AdvancedVI.value_and_gradient!(
ad::ADTypes.AutoZygote, f, θ::AbstractVector{<:Real}, out::DiffResults.MutableDiffResult
::ADTypes.AutoZygote,
f,
x::AbstractVector{<:Real},
out::DiffResults.MutableDiffResult
)
y, back = Zygote.pullback(f, θ)
θ = back(one(y))
y, back = Zygote.pullback(f, x)
x = back(one(y))
DiffResults.value!(out, y)
DiffResults.gradient!(out, only(∇θ))
DiffResults.gradient!(out, only(∇x))
return out
end

function AdvancedVI.value_and_gradient!(
ad::ADTypes.AutoZygote,
f,
x::AbstractVector{<:Real},
aux,
out::DiffResults.MutableDiffResult
)
AdvancedVI.value_and_gradient!(ad, x′ -> f(x′, aux), x, out)
end

end
32 changes: 25 additions & 7 deletions src/AdvancedVI.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,35 @@ using StatsBase

# derivatives
"""
value_and_gradient!(ad, f, θ, out)
value_and_gradient!(ad, f, x, out)
value_and_gradient!(ad, f, x, aux, out)

Evaluate the value and gradient of a function `f` at `θ` using the automatic differentiation backend `ad` and store the result in `out`.
Evaluate the value and gradient of a function `f` at `x` using the automatic differentiation backend `ad` and store the result in `out`.
`f` may receive auxiliary input as `f(x,aux)`.

# Arguments
- `ad::ADTypes.AbstractADType`: Automatic differentiation backend.
- `f`: Function subject to differentiation.
- `θ`: The point to evaluate the gradient.
- `x`: The point to evaluate the gradient.
- `aux`: Auxiliary input passed to `f`.
- `out::DiffResults.MutableDiffResult`: Buffer to contain the output gradient and function value.
"""
function value_and_gradient! end

"""
stop_gradient(x)

Stop the gradient from propagating to `x` if the selected ad backend supports it.
Otherwise, it is equivalent to `identity`.

# Arguments
- `x`: Input

# Returns
- `x`: Same value as the input.
"""
function stop_gradient end

# Update for gradient descent step
"""
update_variational_params!(family_type, opt_st, params, restructure, grad)
Expand Down Expand Up @@ -78,22 +95,23 @@ If the estimator is stateful, it can implement `init` to initialize the state.
abstract type AbstractVariationalObjective end

"""
init(rng, obj, λ, restructure)
init(rng, obj, prob, params, restructure)

Initialize a state of the variational objective `obj` given the initial variational parameters `λ`.
This function needs to be implemented only if `obj` is stateful.

# Arguments
- `rng::Random.AbstractRNG`: Random number generator.
- `obj::AbstractVariationalObjective`: Variational objective.
- `λ`: Initial variational parameters.
- `params`: Initial variational parameters.
- `restructure`: Function that reconstructs the variational approximation from `λ`.
"""
init(
::Random.AbstractRNG,
::AbstractVariationalObjective,
::AbstractVector,
::Any
::Any,
::Any,
::Any,
) = nothing

"""
Expand Down
36 changes: 21 additions & 15 deletions src/objectives/elbo/repgradelbo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,14 +56,13 @@ function estimate_energy_with_samples(prob, samples)
end

"""
reparam_with_entropy(rng, q, q_stop, n_samples, ent_est)
reparam_with_entropy(rng, q, n_samples, ent_est)

Draw `n_samples` from `q` and compute its entropy.

# Arguments
- `rng::Random.AbstractRNG`: Random number generator.
- `q`: Variational approximation.
- `q_stop`: `q` but with its gradient stopped.
- `n_samples::Int`: Number of Monte Carlo samples
- `ent_est`: The entropy estimation strategy. (See `estimate_entropy`.)

Expand All @@ -72,7 +71,11 @@ Draw `n_samples` from `q` and compute its entropy.
- `entropy`: An estimate (or exact value) of the differential entropy of `q`.
"""
function reparam_with_entropy(
rng::Random.AbstractRNG, q, q_stop, n_samples::Int, ent_est::AbstractEntropyEstimator
rng ::Random.AbstractRNG,
q,
q_stop,
n_samples::Int,
ent_est ::AbstractEntropyEstimator
)
samples = rand(rng, q, n_samples)
entropy = estimate_entropy_maybe_stl(ent_est, samples, q, q_stop)
Expand All @@ -94,28 +97,31 @@ end
estimate_objective(obj::RepGradELBO, q, prob; n_samples::Int = obj.n_samples) =
estimate_objective(Random.default_rng(), obj, q, prob; n_samples)

function estimate_repgradelbo_ad_forward(params′, aux)
@unpack rng, obj, problem, restructure, q_stop = aux
q = restructure(params′)
samples, entropy = reparam_with_entropy(rng, q, q_stop, obj.n_samples, obj.entropy)
energy = estimate_energy_with_samples(problem, samples)
elbo = energy + entropy
-elbo
end

function estimate_gradient!(
rng ::Random.AbstractRNG,
obj ::RepGradELBO,
adtype::ADTypes.AbstractADType,
out ::DiffResults.MutableDiffResult,
prob,
λ,
params,
restructure,
state,
)
q_stop = restructure(λ)
function f(λ′)
q = restructure(λ′)
samples, entropy = reparam_with_entropy(rng, q, q_stop, obj.n_samples, obj.entropy)
energy = estimate_energy_with_samples(prob, samples)
elbo = energy + entropy
-elbo
end
value_and_gradient!(adtype, f, λ, out)

q_stop = restructure(params)
aux = (rng=rng, obj=obj, problem=prob, restructure=restructure, q_stop=q_stop)
value_and_gradient!(
adtype, estimate_repgradelbo_ad_forward, params, aux, out
)
nelbo = DiffResults.value(out)
stat = (elbo=-nelbo,)

out, nothing, stat
end
2 changes: 1 addition & 1 deletion src/optimize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ function optimize(
)
params, restructure = Optimisers.destructure(deepcopy(q_init))
opt_st = maybe_init_optimizer(state_init, optimizer, params)
obj_st = maybe_init_objective(state_init, rng, objective, params, restructure)
obj_st = maybe_init_objective(state_init, rng, objective, problem, params, restructure)
grad_buf = DiffResults.DiffResult(zero(eltype(params)), similar(params))
stats = NamedTuple[]

Expand Down
17 changes: 13 additions & 4 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,19 +6,28 @@ end
function maybe_init_optimizer(
state_init::NamedTuple,
optimizer ::Optimisers.AbstractRule,
params ::AbstractVector
params
)
haskey(state_init, :optimizer) ? state_init.optimizer : Optimisers.setup(optimizer, params)
if haskey(state_init, :optimizer)
state_init.optimizer
else
Optimisers.setup(optimizer, params)
end
end

function maybe_init_objective(
state_init::NamedTuple,
rng ::Random.AbstractRNG,
objective ::AbstractVariationalObjective,
params ::AbstractVector,
problem,
params,
restructure
)
haskey(state_init, :objective) ? state_init.objective : init(rng, objective, params, restructure)
if haskey(state_init, :objective)
state_init.objective
else
init(rng, objective, problem, params, restructure)
end
end

eachsample(samples::AbstractMatrix) = eachcol(samples)
Expand Down
3 changes: 1 addition & 2 deletions test/Project.toml
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Bijectors = "76274a88-744f-5084-9051-94815aaf08c4"
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Expand All @@ -26,7 +26,6 @@ ADTypes = "0.2.1, 1"
Bijectors = "0.13"
Distributions = "0.25.100"
DistributionsAD = "0.6.45"
Enzyme = "0.12"
FillArrays = "1.6.1"
ForwardDiff = "0.10.36"
Functors = "0.4.5"
Expand Down
29 changes: 29 additions & 0 deletions test/interface/repgradelbo.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,32 @@ using Test
@test elbo ≈ elbo_ref rtol=0.1
end
end

@testset "interface RepGradELBO STL variance reduction" begin
seed = (0x38bef07cf9cc549d)
rng = StableRNG(seed)

modelstats = normal_meanfield(rng, Float64)
@unpack model, μ_true, L_true, n_dims, is_meanfield = modelstats

@testset for ad in [
ADTypes.AutoForwardDiff(),
ADTypes.AutoReverseDiff(),
ADTypes.AutoZygote()
]
q_true = MeanFieldGaussian(
Vector{eltype(μ_true)}(μ_true),
Diagonal(Vector{eltype(L_true)}(diag(L_true)))
)
params, re = Optimisers.destructure(q_true)
obj = RepGradELBO(10; entropy=StickingTheLandingEntropy())
out = DiffResults.DiffResult(zero(eltype(params)), similar(params))

aux = (rng=rng, obj=obj, problem=model, restructure=re, q_stop=q_true)
AdvancedVI.value_and_gradient!(
ad, AdvancedVI.estimate_repgradelbo_ad_forward, params, aux, out
)
grad = DiffResults.gradient(out)
@test norm(grad) ≈ 0 atol=1e-5
end
end
Loading