diff --git a/docs/src/elbo/repgradelbo.md b/docs/src/elbo/repgradelbo.md index 24e99169..2331e86c 100644 --- a/docs/src/elbo/repgradelbo.md +++ b/docs/src/elbo/repgradelbo.md @@ -71,7 +71,7 @@ binv = inverse(b) q_transformed = Bijectors.TransformedDistribution(q, binv) ``` By passing `q_transformed` to `optimize`, the Jacobian adjustment for the bijector `b` is automatically applied. -(See [Examples](@ref examples) for a full working example.) +(See [Examples](@ref examples) for a fully working example.) [^KTRGB2017]: Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2017). Automatic differentiation variational inference. *Journal of Machine Learning Research*. [^DLTBV2017]: Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., ... & Saurous, R. A. (2017). Tensorflow distributions. arXiv. @@ -206,8 +206,8 @@ _, stats_stl, _ = AdvancedVI.optimize( t = [stat.iteration for stat in stats_cfe] y_cfe = [stat.elbo for stat in stats_cfe] y_stl = [stat.elbo for stat in stats_stl] -plot( t, y_cfe, label="BBVI CFE", xlabel="Iteration", ylabel="ELBO", ylims=[-20,5]) -plot!(t, y_stl, label="BBVI repgradelbo", xlabel="Iteration", ylabel="ELBO", ylims=[-20,5]) +plot( t, y_cfe, label="BBVI CFE", xlabel="Iteration", ylabel="ELBO", ylims=[-50,5]) +plot!(t, y_stl, label="BBVI repgradelbo", xlabel="Iteration", ylabel="ELBO", ylims=[-50,5]) savefig("advi_stl_elbo.svg") nothing ``` @@ -270,8 +270,8 @@ _, stats_qmc, _ = AdvancedVI.optimize( t = [stat.iteration for stat in stats_qmc] y_qmc = [stat.elbo for stat in stats_qmc] -plot( t, y_stl, label="BBVI STL.", xlabel="Iteration", ylabel="ELBO", ylims=[-20,5]) -plot!(t, y_qmc, label="BBVI STL QMC", xlabel="Iteration", ylabel="ELBO", ylims=[-20,5]) +plot( t, y_stl, label="BBVI STL.", xlabel="Iteration", ylabel="ELBO", ylims=[-50,5]) +plot!(t, y_qmc, label="BBVI STL QMC", xlabel="Iteration", ylabel="ELBO", ylims=[-50,5]) savefig("advi_qmc_elbo.svg") function Distributions.rand(