-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader_malscan.py
269 lines (202 loc) · 11.8 KB
/
dataloader_malscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
from PIL import Image
import os
import itertools
import scipy.sparse
import numpy as np
class IncrementalDataset(Dataset):
def __init__(self, config, data, root_path, step, families_global_indices, train_test, hash_type, mode='new', img_nomrl=True):
self.config = config
self.data = data
self.step = step
self.hash_type = hash_type
self.families_global_indices = families_global_indices
self.mode = mode
self.train_test = train_test
transform_list = [
# transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[9.28691073e-05, 1.65401002e-01, 6.80466368e-02], std=[0.00598309, 0.13839283, 0.14697313]),
]
if not img_nomrl:
transform_list.pop(-1)
self.transform = transforms.Compose(transform_list)
self.indices_test_end_step = []
self.new_cls_ids_in_current_step = []
self.training_cls_number_each_step = []
self.path_vectors = root_path
self.update_data_indices()
def update_data_indices(self):
indices = []
cls_id_list = []
# training_classes_current_step = []
if self.mode == 'both':
for step in range(self.step+1):
for class_name in self.data[f'step={step}']:
self.families_global_indices.setdefault(class_name, len(self.families_global_indices)) #give the class an index if new
indices.extend([(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'),
self.families_global_indices[class_name]) for sha in self.data[f'step={step}'][class_name] if os.path.exists(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'))])
cls_id_list.append(self.families_global_indices[class_name])
if self.train_test=="test":
self.indices_test_end_step.append(len(indices))
cls_id_list = list(set(cls_id_list))
elif self.mode == 'new':
for class_name in self.data[f'step={self.step}']:
self.families_global_indices.setdefault(class_name, len(self.families_global_indices))
if self.families_global_indices[class_name] in self.cls_id_list_so_far:
if self.config['il_trainer'] == 'ssil' and self.config['multi_exemplar'] and self.step > 0:
continue
else:
self.new_cls_ids_in_current_step.append(self.families_global_indices[class_name])
indices.extend([(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'),
self.families_global_indices[class_name]) for sha in self.data[f'step={self.step}'][class_name] if os.path.exists(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'))])
cls_id_list.append(self.families_global_indices[class_name])
self.cls_id_list_so_far.update(set(cls_id_list))
if self.train_test=="train":
self.training_classes_current_step = list(set(cls_id_list))
self.training_cls_number_each_step.append(len(self.training_classes_current_step))
self.indices = indices
# self.training_classes_current_step = training_classes_current_step
# print(f"Initialized {self.train_test} dataset with {len(self.indices)} samples across {len(cls_id_list)} classes: {' '.join(map(str, cls_id_list))}.")
print(f"Initialized {self.train_test} dataset with {len(self.indices)} samples across {len(cls_id_list)} classes.")
def set_incremental_step(self, step):
self.step = step
self.new_cls_ids_in_current_step = []
self.update_data_indices()
def __getitem__(self, index):
vect_path, label = self.indices[index]
vector = scipy.sparse.load_npz(vect_path).todense().ravel().tolist()[0]
vector = torch.tensor(vector, dtype=torch.float)
if self.config["malscan_vector"]:
img = vector
else:
vector = torch.cat((vector.float(), torch.zeros(4984)))#196608-108664=87944
img = torch.reshape(vector, (3, 176, 176))
return img, label, index
def __len__(self):
return len(self.indices)
class ExemplarIncrementalDataset(IncrementalDataset):
def __init__(self, config, data, root_path, families_global_indices, train_test, hash_type, mode='new', img_nomrl=True):
self.config = config
self.data = data
self.step = 0
self.hash_type = hash_type
self.families_global_indices = families_global_indices
self.mode = mode
self.train_test = train_test
self.path_vectors = root_path
transform_list = [
# transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[9.28691073e-05, 1.65401002e-01, 6.80466368e-02], std=[0.00598309, 0.13839283, 0.14697313]),
]
if not img_nomrl:
transform_list.pop(-1)
self.transform = transforms.Compose(transform_list)
self.exemplars = []
self.indices_test_end_step = []
self.cls_id_list_so_far = set()
self.training_cls_number_each_step = []
def _update_exemplars(self, exemplars):
if exemplars is None:
return
self.exemplars = list(itertools.chain(*exemplars))
print('exemplar size: ', len(self.exemplars))
self._conbine_exemplar()
def _conbine_exemplar(self):
self.indices += self.exemplars
class PureExemplarDataset(ExemplarIncrementalDataset):
def __init__(self, config, data, root_path, families_global_indices, train_test, hash_type, mode='new', img_nomrl=True):
super().__init__(config, data, root_path, families_global_indices, train_test, hash_type, mode, img_nomrl)
# self.exemplars = []
def __getitem__(self, index):
index_new = index % len(self.exemplars)
vect_path, label = self.exemplars[index_new]
vector = scipy.sparse.load_npz(vect_path).todense().ravel().tolist()[0]
vector = torch.tensor(vector)
vector = torch.cat((vector.float(), torch.zeros(4984)))#196608-108664=87944
img = torch.reshape(vector, (3, 176, 176))
return img, label, index
def __len__(self):
return len(self.exemplars)
class MultiExemplarDataset(PureExemplarDataset):
'''
The exemplars come from two sources:
1) random selection from old samples of old families from previous steps
2) all new samples of old families in current step
'''
def __init__(self, config, data, root_path, families_global_indices, train_test, hash_type, mode='new', img_nomrl=True):
super().__init__(config, data, root_path, families_global_indices, train_test, hash_type, mode, img_nomrl)
self.new_samps_of_old_families = []
def update_data_indices(self):
indices = []
cls_id_list = []
training_classes_current_step = []
for class_name in self.data[f'step={self.step}']:
self.families_global_indices.setdefault(class_name, len(self.families_global_indices))
if self.step > 0 and self.families_global_indices[class_name] in self.cls_id_list_so_far:
self.new_samps_of_old_families.extend([(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'),
self.families_global_indices[class_name]) for sha in self.data[f'step={self.step}'][class_name] if os.path.exists(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'))])
else:
indices.extend([(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'),
self.families_global_indices[class_name]) for sha in self.data[f'step={self.step}'][class_name] if os.path.exists(os.path.join(self.path_vectors, 'malscanco', sha+'_malscanco.npz'))])
cls_id_list.append(self.families_global_indices[class_name])
self.cls_id_list_so_far.update(set(cls_id_list))
self.training_classes_current_step = list(set(cls_id_list))
self.training_cls_number_each_step.append(len(self.training_classes_current_step))
self.indices = indices
# self.training_classes_current_step = training_classes_current_step
# print(f"Initialized {self.train_test} dataset with {len(self.indices)} samples across {len(cls_id_list)} classes: {' '.join(map(str, cls_id_list))}.")
print(f"Initialized exemplar dataset with {len(self.exemplars)} samples across {len(cls_id_list)} classes.")
def _update_exemplars(self, exemplars):
if exemplars is None:
return
self.exemplars = list(itertools.chain(*exemplars)) + self.new_samps_of_old_families
def set_incremental_step(self, step):
self.step = step
self.new_samps_of_old_families = []
self.update_data_indices()
if __name__ == "__main__":
import json
from exemplar import gen_random_step_exemplar_set
root_data_path = 'DATASET/MalNet/malnet-images-tiny/images_all/'
with open('../data_info/tiny/steps_family_samples_train.json', 'r') as f:
train_data = json.load(f)
with open('../data_info/tiny/steps_family_samples_test.json', 'r') as f:
val_data = json.load(f)
# Set hyperparameters
mode = "new"
init_num_classes = len(train_data['step=0']) # The initial number of classes
families_global_indices = {}
batch_size = 256
num_steps = len(train_data)
exemplar_numper_per_class_per_step = 3
mapping_dict = {} #to ensure labels in the training are ordinal
inverse_mapping_dict = {} #to retrieve original labels back
incremental_nbr_new_classes = [0] #we assume that before step 0, we had 0 families
train_dataset = ExemplarIncrementalDataset(train_data, root_data_path, families_global_indices, "train", mode)
val_dataset = ExemplarIncrementalDataset(val_data, root_data_path, families_global_indices, "test", 'both')
exemplars = None
for step in range(num_steps):
train_dataset.set_incremental_step(step)
val_dataset.set_incremental_step(step)
train_dataset._update_exemplars(exemplars)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
training_classes_current_step = train_dataset.training_classes_current_step #global labels of new families in train
new_classes = [] #to save mapped labels from mapping_dict of new families
for i in range(len(training_classes_current_step)):
if training_classes_current_step[i] not in mapping_dict:
mapping_dict[training_classes_current_step[i]] = len(mapping_dict)
inverse_mapping_dict[len(mapping_dict)-1] = training_classes_current_step[i]
new_classes.append(mapping_dict[training_classes_current_step[i]])
# print("new_classes", new_classes)
incremental_nbr_new_classes.append(len(new_classes)+incremental_nbr_new_classes[-1])
'''
[Training Process]
'''
exemplars = gen_random_step_exemplar_set(step, exemplar_numper_per_class_per_step, train_dataset, exemplars)
print('train_class_number', len(train_dataset.training_classes_current_step))
print('exemplar size: ', len(exemplars))