-
Notifications
You must be signed in to change notification settings - Fork 2
/
models.py
175 lines (141 loc) · 6.24 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
""" Transformer Model Classes & Config Class """
import math
import json
from typing import NamedTuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import split_last, merge_last
class Config(NamedTuple):
"Configuration for BERT model"
vocab_size: int = None # Size of Vocabulary
dim: int = 768 # Dimension of Hidden Layer in Transformer Encoder
n_layers: int = 12 # Numher of Hidden Layers
n_heads: int = 12 # Numher of Heads in Multi-Headed Attention Layers
dim_ff: int = 768*4 # Dimension of Intermediate Layers in Positionwise Feedforward Net
#activ_fn: str = "gelu" # Non-linear Activation Function Type in Hidden Layers
p_drop_hidden: float = 0.1 # Probability of Dropout of various Hidden Layers
p_drop_attn: float = 0.1 # Probability of Dropout of Attention Layers
n_segments: int = 2 # Number of Sentence Segments
max_len: int = 512 # Maximum Length for Positional Embeddings
class_vec_len: int = 128 # vector length of class embedding from AE
min_instr: int = 8 # Minimum number of instructions for input embeddings
max_instr: int = 64 # Maximum number of instructions for input embeddings
out_dim: int = 256 # Maximum length of embedding for each instruction.
@classmethod
def from_json(cls, file):
return cls(**json.load(open(file, "r")))
def gelu(x):
"Implementation of the gelu activation function by Hugging Face"
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class LayerNorm(nn.Module):
"A layernorm module in the TF style (epsilon inside the square root)."
def __init__(self, cfg, variance_epsilon=1e-12):
super().__init__()
self.gamma = nn.Parameter(torch.ones(cfg.dim))
self.beta = nn.Parameter(torch.zeros(cfg.dim))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class Embeddings(nn.Module):
"The embedding module from word, position and token_type embeddings."
def __init__(self, cfg):
super().__init__()
self.tok_embed = nn.Embedding(cfg.vocab_size, cfg.dim) # token embedding
self.pos_embed = nn.Embedding(cfg.max_len, cfg.dim) # position embedding
self.seg_embed = nn.Embedding(cfg.n_segments, cfg.dim) # segment(token type) embedding
self.norm = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x, seg):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x) # (S,) -> (B, S)
e = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
return self.drop(self.norm(e))
class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Dot Product Attention """
def __init__(self, cfg):
super().__init__()
self.proj_q = nn.Linear(cfg.dim, cfg.dim)
self.proj_k = nn.Linear(cfg.dim, cfg.dim)
self.proj_v = nn.Linear(cfg.dim, cfg.dim)
self.drop = nn.Dropout(cfg.p_drop_attn)
self.scores = None # for visualization
self.n_heads = cfg.n_heads
def forward(self, x, mask):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))
if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)
scores = self.drop(F.softmax(scores, dim=-1))
# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
self.scores = scores
return h
class PositionWiseFeedForward(nn.Module):
""" FeedForward Neural Networks for each position """
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg.dim, cfg.dim_ff)
self.fc2 = nn.Linear(cfg.dim_ff, cfg.dim)
#self.activ = lambda x: activ_fn(cfg.activ_fn, x)
def forward(self, x):
# (B, S, D) -> (B, S, D_ff) -> (B, S, D)
return self.fc2(gelu(self.fc1(x)))
class Block(nn.Module):
""" Transformer Block """
def __init__(self, cfg):
super().__init__()
self.attn = MultiHeadedSelfAttention(cfg)
self.proj = nn.Linear(cfg.dim, cfg.dim)
self.norm1 = LayerNorm(cfg)
self.pwff = PositionWiseFeedForward(cfg)
self.norm2 = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x, mask):
h = self.attn(x, mask)
h = self.norm1(x + self.drop(self.proj(h)))
h = self.norm2(h + self.drop(self.pwff(h)))
return h
class Transformer(nn.Module):
""" Transformer with Self-Attentive Blocks"""
def __init__(self, cfg):
super().__init__()
self.embed = Embeddings(cfg)
self.blocks = nn.ModuleList([Block(cfg) for _ in range(cfg.n_layers)])
def forward(self, x, seg, mask):
h = self.embed(x, seg)
for block in self.blocks:
h = block(h, mask)
return h
class DexBERT(nn.Module):
"DexBERT model for inference."
def __init__(self, cfg):
super().__init__()
self.transformer = Transformer(cfg)
# auto-encoder
self.AE_Layer_1 = nn.Linear(cfg.max_len*cfg.dim, cfg.max_len)
self.AE_Layer_2 = nn.Linear(cfg.max_len, cfg.class_vec_len)
def forward(self, input_ids, segment_ids, input_mask):
h = self.transformer(input_ids, segment_ids, input_mask)
# auto-encoder
r1 = torch.flatten(h, start_dim=1)
x = self.AE_Layer_1(r1)
r2 = self.AE_Layer_2(x)
return r2