forked from jondurbin/airoboros
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example-config.yaml
455 lines (392 loc) · 12.3 KB
/
example-config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# The model to use in generation. Available models: https://platform.openai.com/docs/models/continuous-model-upgrades
model: "gpt-4"
# OpenAI API key (if null, uses environment variable OPENAI_API_KEY)
openai_api_key:
# Optionally configure the OpenAI organization ID.
organization_id:
# Combined output file path.
output_path: instructions.jsonl
# Path to the default topics file.
topics_path: topics.txt
# Overwrite the output file, use with care!
overwrite: false
# Append to the output file.
append: true
# Embedding model, for calculating similarity between documents; probably best left as-is since the code is fairly specific to this one.
embedding_model: thenlper/gte-small
embedding_device: cpu
# If you have a GPU, set this to "cuda", e.g.:
# embedding_device: cuda
# Topic avoidance prompt string.
topic_avoidance: Avoid any tasks that would be related to climate change, green tech, renewable energy, DEI (diversity, equity, inclusion), sex and/or gender, religion, politics, social issues, race, ethnicity, artificial intelligence, baking/cooking, urban development, or any topic that you would likely not respond to, or any task which a language model would not be able to respond to, e.g. tasks about emotions, feelings, physical senses, etc.
# Regexes used to filter responses, mostly common words and phrases used in refusals.
response_filters:
- "my programming"
- "openai"
- "language model"
- "large language"
- "as an? (ai|generative language|gpt|bot)"
- "illegal and dangerous"
- "i do(n't| not) (possess|have|exhibit) (personal|consciousness|subjective)"
- "personal (feelings|thoughts|emotions|desires|experiences|goals|objective|belief)"
- "(can('t| ?not)|w(on't|will not)|unable.?) (\\w+\\s)+(with (that|your)|your \\w+|provide)"
- "my limitations"
- "the limitations of my"
- "my abilities"
- "violates my"
- "i (can('t| ?not)|w(on't|will not)|am (not |un)able.?).{0,30}(you are|you're|your )"
- "please note that"
- "flesch"
# Optionally limit the maximum number of tokens to use when generating instructions.
max_tokens:
# Minimum similarity score when checking for duplicates.
min_docsearch_score: 0.07
# Default OpenAI API request parameters.
api_params:
temperature: 0.7
top_p: 0.5
frequency_penalty: 0.0
presence_penalty: 2
# Topic generation prompt.
topic_prompt: Give me a numbered list of 20 completely random topics. {topic_avoidance}
topic_request_count: 20
# Default count per generator, if not specified.
default_count: 100
# Default batch size, if not specified.
default_batch_size: 10
# Default readability score hint: https://en.wikipedia.org/wiki/Flesch%E2%80%93Kincaid_readability_tests
default_flesch: The output should be written in such a way as to have a Flesch-Kincaid readability score of 30 or lower - best understood by those with college education. The response must not contain any notes or information about Flesch-Kincaid scores.
# Language.
language: English
# Individual instructor configurations.
instructors:
##################################################################################
# Generic/general prompt configuration.
general:
# OpenAI settings.
api_params:
temperature: 0.7
top_p: 0.5
frequency_penalty: 0.0
presence_penalty: 2
# Number of instructions to generate.
count: 100
# Batch size/number of instructions to generate per request.
batch_size: 10
# Path to prompt to use in generating instructions.
prompt_path: general.txt
# Optionally override the default topics path for general prompts.
topics_path:
# Optionally override the min similarity score.
min_docsearch_score:
# Optionally override language.
language:
##################################################################################
# Contextual, e.g. closed-context question answering/summarization/etc.
contextual:
api_params:
temperature: 0.5
count: 70
# Writing styles to use for the context being generated.
context_styles:
- news article
- blog post
- slack conversation
- text messages
- fictional short story
- video transcript
- song
- poem
- scientific study
- medical report
- reddit post with replies
- email
- tweet
- jira ticket
- github merge request
- gitlab issue
- how-to article
# Output formatting options.
formatting_options:
- JSON
- YAML
- CSV
- markdown
- markdown table
- bullet list
- numbered list
- python dict
- php associative array
- JSONL
- javascript object
- XML
# Prompt path.
prompt_path: contextual.txt
# Path to prompt used to generate responses.
response_prompt_path: contextual_response.txt
# Optionally override the topics to use for contextual prompts.
topics_path:
##################################################################################
# Counterfactual contextual prompts, used to de-hallucinate Q&A a bit.
counterfactual_contextual:
api_params: {}
count: 30
batch_size: 10
prompt_path: counterfactual_contextual.txt
response_prompt_path: counterfactual_contextual_response.txt
topics_path:
##################################################################################
# Coding tasks.
coding:
count: 100
batch_size: 10
# Ratio of prompts that should be "plain", i.e. without explanations, backticks, etc.
plain_ratio: 0.5
# Limit programming languages.
coding_languages:
- python
- javascript
- java
- c
- c++
- golang
- C#
- bash
- powershell
- SQL
# Additional related software to (randomly) reference in tasks.
related_software:
- elasticsearch
- opensearch
- mongodb
- cassandra
- redis
- memcached
- postgresql
- mariadb
- mysql
- aws s3
- gcs cloud storage
- azure storage
- aws lambda
- kubernetes
- pytorch
- pandas
- numpy
- keras
- tensorflow
- scipy
- matplotlib
- django
- cherrypy
- swagger/openapi
- pyramid web framework
# Min docsearch score.
min_docsearch_score: 0.02
# The prompt used to generate the instructions.
prompt_path: coding.txt
##################################################################################
# Trivia tasks.
trivia:
count: 100
batch_size: 20
min_docsearch_score: 0.035
prompt_path: trivia.txt
##################################################################################
# Guided experiences, e.g. meditation.
experience:
api_params:
temperature: 0.9
top_p: 0.4
word_count: 1000
count: 100
batch_size: 3
min_docsearch_score: 0.1
prompt_path: experience.txt
##################################################################################
# Orca style reasoning/math prompts.
orca:
count: 100
batch_size: 10
min_docsearch_score: 0.02
prompt_path: orca.txt
##################################################################################
# Orca style reasoning/math prompts.
riddle:
api_params:
temperature: 0.9
top_p: 0.4
batch_size: 50
min_docsearch_score: 0.01
count: 100
prompt_path: riddle.txt
##################################################################################
# Wordgames.
wordgame:
count: 100
batch_size: 10
min_docsearch_score: 0.01
prompt_path: wordgame.txt
##################################################################################
# Roleplay.
roleplay:
api_params:
temperature: 0.9
count: 100
batch_size: 10
min_docsearch_score: 0.1
prompt_path: roleplay.txt
##################################################################################
# Chain-of-thought.
cot:
count: 50
batch_size: 5
min_docsearch_score: 0.03
prompt_path: cot.txt
##################################################################################
# Agent/router.
agent:
count: 100
batch_size: 5
min_docsearch_score: 0.03
prompt_path: agent.txt
##################################################################################
# reWOO style planner
plan:
count: 100
batch_size: 1
min_docsearch_score: 0.02
prompt_path: plan.txt
##################################################################################
# Writing tasks.
writing:
api_params:
temperature: 0.9
styles:
- happy
- sad
- tragic
- unexpected
- inspirational
- evil
- hilarious
- suspenseful
- horrific
- nostalgic
- thought-provoking
- enigmatic
- fantastical
- heartwarming
- romantic
count: 100
batch_size: 12
min_docsearch_score: 0.1
##################################################################################
# Character/scenario card tasks.
card:
api_params:
temperature: 0.9
count: 50
batch_size: 5
min_docsearch_score: 0.05
##################################################################################
# Jokes.
joke:
api_params:
temperature: 0.9
count: 100
batch_size: 20
min_docsearch_score: 0.06
##################################################################################
# Songs.
song:
api_params:
temperature: 0.9
count: 200
batch_size: 25
min_docsearch_score: 0.1
##################################################################################
# Multiple choice.
multiple_choice:
api_params:
temperature: 0.5
count: 100
batch_size: 5
min_docsearch_score: 0.03
contextual_ratio: 0.3
##################################################################################
# Detailed writing.
detailed_writing:
api_params:
temperature: 0.9
batch_size: 2
count: 50
min_docsearch_score: 0.1
##################################################################################
# Character cards - these aren't used directly, they are stored in output_dir, and
# used by the chat instructor, stylized response, etc.
character:
api_params:
temperature: 0.9
count: 25
batch_size: 1
min_docsearch_score: 0.1
seed_path: character_seeds
output_dir: characters
##################################################################################
# Chats - this is $$$, many calls, use with care.
rp:
api_params:
temperature: 0.9
presence_penalty: 1.3
frequency_penalty: 1.3
count: 25
turn_count: 12
##################################################################################
# Stylized responses, from chat character cards.
stylized_response:
api_params:
temperature: 0.7
batch_size: 15
count: 100
min_docsearch_score: 0.3
categories:
- trivia
- experience
- general
- joke
- riddle
##################################################################################
# Get-to-know-me. This is a simple generator that creates N questions to ask of
# a character (from character instructor). We can combine all of the question
# and response pairs into one large training section, which acts somewhat like
# ghost attention - each response was generated with the character system prompt,
# but the individual user/assistant response pairs are just the questions and
# answers, so we train the LLM to focus on the provided system prompt, even after
# many rounds of interactions. In theory, this will help the system prompt to
# stay very sticky.
gtkm:
api_params:
temperature: 0.7
question_count: 15
count: 100
##################################################################################
# Common misconceptions.
misconception:
api_params:
temperature: 0.5
batch_size: 25
min_docsearch_score: 0.02
count: 500
##################################################################################
# Some semblence of awareness (time, location, senses).
awareness:
count: 100
batch_size: 5
min_docsearch_score: 0.1
##################################################################################
# Basic text enhancement/correcting.
editor:
count: 100
batch_size: 5
min_docsearch_score: 0.01