-
Notifications
You must be signed in to change notification settings - Fork 1
/
primecandidate.c
445 lines (378 loc) · 13.1 KB
/
primecandidate.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
/*
* primecandidate.c: implementation of the PrimeCandidateSource
* abstraction declared in sshkeygen.h.
*/
#include <assert.h>
#include "ssh.h"
#include "mpint.h"
#include "mpunsafe.h"
#include "sshkeygen.h"
struct avoid {
unsigned mod, res;
};
struct PrimeCandidateSource {
unsigned bits;
bool ready, try_sophie_germain;
bool one_shot, thrown_away_my_shot;
/* We'll start by making up a random number strictly less than this ... */
mp_int *limit;
/* ... then we'll multiply by 'factor', and add 'addend'. */
mp_int *factor, *addend;
/* Then we'll try to add a small multiple of 'factor' to it to
* avoid it being a multiple of any small prime. Also, for RSA, we
* may need to avoid it being _this_ multiple of _this_: */
unsigned avoid_residue, avoid_modulus;
/* Once we're actually running, this will be the complete list of
* (modulus, residue) pairs we want to avoid. */
struct avoid *avoids;
size_t navoids, avoidsize;
/* List of known primes that our number will be congruent to 1 modulo */
mp_int **kps;
size_t nkps, kpsize;
};
PrimeCandidateSource *pcs_new_with_firstbits(unsigned bits,
unsigned first, unsigned nfirst)
{
PrimeCandidateSource *s = snew(PrimeCandidateSource);
assert(first >> (nfirst-1) == 1);
s->bits = bits;
s->ready = false;
s->try_sophie_germain = false;
s->one_shot = false;
s->thrown_away_my_shot = false;
s->kps = NULL;
s->nkps = s->kpsize = 0;
s->avoids = NULL;
s->navoids = s->avoidsize = 0;
/* Make the number that's the lower limit of our range */
mp_int *firstmp = mp_from_integer(first);
mp_int *base = mp_lshift_fixed(firstmp, bits - nfirst);
mp_free(firstmp);
/* Set the low bit of that, because all (nontrivial) primes are odd */
mp_set_bit(base, 0, 1);
/* That's our addend. Now initialise factor to 2, to ensure we
* only generate odd numbers */
s->factor = mp_from_integer(2);
s->addend = base;
/* And that means the limit of our random numbers must be one
* factor of two _less_ than the position of the low bit of
* 'first', because we'll be multiplying the random number by
* 2 immediately afterwards. */
s->limit = mp_power_2(bits - nfirst - 1);
/* avoid_modulus == 0 signals that there's no extra residue to avoid */
s->avoid_residue = 1;
s->avoid_modulus = 0;
return s;
}
PrimeCandidateSource *pcs_new(unsigned bits)
{
return pcs_new_with_firstbits(bits, 1, 1);
}
void pcs_free(PrimeCandidateSource *s)
{
mp_free(s->limit);
mp_free(s->factor);
mp_free(s->addend);
for (size_t i = 0; i < s->nkps; i++)
mp_free(s->kps[i]);
sfree(s->avoids);
sfree(s->kps);
sfree(s);
}
void pcs_try_sophie_germain(PrimeCandidateSource *s)
{
s->try_sophie_germain = true;
}
void pcs_set_oneshot(PrimeCandidateSource *s)
{
s->one_shot = true;
}
static void pcs_require_residue_inner(PrimeCandidateSource *s,
mp_int *mod, mp_int *res)
{
/*
* We already have a factor and addend. Ensure this one doesn't
* contradict it.
*/
mp_int *gcd = mp_gcd(mod, s->factor);
mp_int *test1 = mp_mod(s->addend, gcd);
mp_int *test2 = mp_mod(res, gcd);
assert(mp_cmp_eq(test1, test2));
mp_free(test1);
mp_free(test2);
/*
* Reduce our input factor and addend, which are constraints on
* the ultimate output number, so that they're constraints on the
* initial cofactor we're going to make up.
*
* If we're generating x and we want to ensure ax+b == r (mod m),
* how does that work? We've already checked that b == r modulo g
* = gcd(a,m), i.e. r-b is a multiple of g, and so are a and m. So
* let's write a=gA, m=gM, (r-b)=gR, and then we can start by
* dividing that off:
*
* ax == r-b (mod m )
* => gAx == gR (mod gM)
* => Ax == R (mod M)
*
* Now the moduli A,M are coprime, which makes things easier.
*
* We're going to need to generate the x in this equation by
* generating a new smaller value y, multiplying it by M, and
* adding some constant K. So we have x = My + K, and we need to
* work out what K will satisfy the above equation. In other
* words, we need A(My+K) == R (mod M), and the AMy term vanishes,
* so we just need AK == R (mod M). So our congruence is solved by
* setting K to be R * A^{-1} mod M.
*/
mp_int *A = mp_div(s->factor, gcd);
mp_int *M = mp_div(mod, gcd);
mp_int *Rpre = mp_modsub(res, s->addend, mod);
mp_int *R = mp_div(Rpre, gcd);
mp_int *Ainv = mp_invert(A, M);
mp_int *K = mp_modmul(R, Ainv, M);
mp_free(gcd);
mp_free(Rpre);
mp_free(Ainv);
mp_free(A);
mp_free(R);
/*
* So we know we have to transform our existing (factor, addend)
* pair into (factor * M, addend * factor * K). Now we just need
* to work out what the limit should be on the random value we're
* generating.
*
* If we need My+K < old_limit, then y < (old_limit-K)/M. But the
* RHS is a fraction, so in integers, we need y < ceil of it.
*/
assert(!mp_cmp_hs(K, s->limit));
mp_int *dividend = mp_add(s->limit, M);
mp_sub_integer_into(dividend, dividend, 1);
mp_sub_into(dividend, dividend, K);
mp_free(s->limit);
s->limit = mp_div(dividend, M);
mp_free(dividend);
/*
* Now just update the real factor and addend, and we're done.
*/
mp_int *addend_old = s->addend;
mp_int *tmp = mp_mul(s->factor, K); /* use the _old_ value of factor */
s->addend = mp_add(s->addend, tmp);
mp_free(tmp);
mp_free(addend_old);
mp_int *factor_old = s->factor;
s->factor = mp_mul(s->factor, M);
mp_free(factor_old);
mp_free(M);
mp_free(K);
s->factor = mp_unsafe_shrink(s->factor);
s->addend = mp_unsafe_shrink(s->addend);
s->limit = mp_unsafe_shrink(s->limit);
}
void pcs_require_residue(PrimeCandidateSource *s,
mp_int *mod, mp_int *res_orig)
{
/*
* Reduce the input residue to its least non-negative value, in
* case it was given as a larger equivalent value.
*/
mp_int *res_reduced = mp_mod(res_orig, mod);
pcs_require_residue_inner(s, mod, res_reduced);
mp_free(res_reduced);
}
void pcs_require_residue_1(PrimeCandidateSource *s, mp_int *mod)
{
mp_int *res = mp_from_integer(1);
pcs_require_residue(s, mod, res);
mp_free(res);
}
void pcs_require_residue_1_mod_prime(PrimeCandidateSource *s, mp_int *mod)
{
pcs_require_residue_1(s, mod);
sgrowarray(s->kps, s->kpsize, s->nkps);
s->kps[s->nkps++] = mp_copy(mod);
}
void pcs_avoid_residue_small(PrimeCandidateSource *s,
unsigned mod, unsigned res)
{
assert(!s->avoid_modulus); /* can't cope with more than one */
s->avoid_modulus = mod;
s->avoid_residue = res % mod; /* reduce, just in case */
}
static int avoid_cmp(const void *av, const void *bv)
{
const struct avoid *a = (const struct avoid *)av;
const struct avoid *b = (const struct avoid *)bv;
return a->mod < b->mod ? -1 : a->mod > b->mod ? +1 : 0;
}
static uint64_t invert(uint64_t a, uint64_t m)
{
int64_t v0 = a, i0 = 1;
int64_t v1 = m, i1 = 0;
while (v0) {
int64_t tmp, q = v1 / v0;
tmp = v0; v0 = v1 - q*v0; v1 = tmp;
tmp = i0; i0 = i1 - q*i0; i1 = tmp;
}
assert(v1 == 1 || v1 == -1);
return i1 * v1;
}
void pcs_ready(PrimeCandidateSource *s)
{
/*
* List all the small (modulus, residue) pairs we want to avoid.
*/
init_smallprimes();
#define ADD_AVOID(newmod, newres) do { \
sgrowarray(s->avoids, s->avoidsize, s->navoids); \
s->avoids[s->navoids].mod = (newmod); \
s->avoids[s->navoids].res = (newres); \
s->navoids++; \
} while (0)
unsigned limit = (mp_hs_integer(s->addend, 65536) ? 65536 :
mp_get_integer(s->addend));
/*
* Don't be divisible by any small prime, or at least, any prime
* smaller than our output number might actually manage to be. (If
* asked to generate a really small prime, it would be
* embarrassing to rule out legitimate answers on the grounds that
* they were divisible by themselves.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
ADD_AVOID(smallprimes[i], 0);
if (s->try_sophie_germain) {
/*
* If we're aiming to generate a Sophie Germain prime (i.e. p
* such that 2p+1 is also prime), then we also want to ensure
* 2p+1 is not congruent to 0 mod any small prime, because if
* it is, we'll waste a lot of time generating a p for which
* 2p+1 can't possibly work. So we have to avoid an extra
* residue mod each odd q.
*
* We can simplify: 2p+1 == 0 (mod q)
* => 2p == -1 (mod q)
* => p == -2^{-1} (mod q)
*
* There's no need to do Euclid's algorithm to compute those
* inverses, because for any odd q, the modular inverse of -2
* mod q is just (q-1)/2. (Proof: multiplying it by -2 gives
* 1-q, which is congruent to 1 mod q.)
*/
for (size_t i = 0; i < NSMALLPRIMES && smallprimes[i] < limit; i++)
if (smallprimes[i] != 2)
ADD_AVOID(smallprimes[i], (smallprimes[i] - 1) / 2);
}
/*
* Finally, if there's a particular modulus and residue we've been
* told to avoid, put it on the list.
*/
if (s->avoid_modulus)
ADD_AVOID(s->avoid_modulus, s->avoid_residue);
#undef ADD_AVOID
/*
* Sort our to-avoid list by modulus. Partly this is so that we'll
* check the smaller moduli first during the live runs, which lets
* us spot most failing cases earlier rather than later. Also, it
* brings equal moduli together, so that we can reuse the residue
* we computed from a previous one.
*/
qsort(s->avoids, s->navoids, sizeof(*s->avoids), avoid_cmp);
/*
* Next, adjust each of these moduli to take account of our factor
* and addend. If we want factor*x+addend to avoid being congruent
* to 'res' modulo 'mod', then x itself must avoid being congruent
* to (res - addend) * factor^{-1}.
*
* If factor == 0 modulo mod, then the answer will have a fixed
* residue anyway, so we can discard it from our list to test.
*/
int64_t factor_m = 0, addend_m = 0, last_mod = 0;
size_t out = 0;
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, res = s->avoids[i].res;
if (mod != last_mod) {
last_mod = mod;
addend_m = mp_unsafe_mod_integer(s->addend, mod);
factor_m = mp_unsafe_mod_integer(s->factor, mod);
}
if (factor_m == 0) {
assert(res != addend_m);
continue;
}
res = (res - addend_m) * invert(factor_m, mod);
res %= mod;
if (res < 0)
res += mod;
s->avoids[out].mod = mod;
s->avoids[out].res = res;
out++;
}
s->navoids = out;
s->ready = true;
}
mp_int *pcs_generate(PrimeCandidateSource *s)
{
assert(s->ready);
if (s->one_shot) {
if (s->thrown_away_my_shot)
return NULL;
s->thrown_away_my_shot = true;
}
while (true) {
mp_int *x = mp_random_upto(s->limit);
int64_t x_res = 0, last_mod = 0;
bool ok = true;
for (size_t i = 0; i < s->navoids; i++) {
int64_t mod = s->avoids[i].mod, avoid_res = s->avoids[i].res;
if (mod != last_mod) {
last_mod = mod;
x_res = mp_unsafe_mod_integer(x, mod);
}
if (x_res == avoid_res) {
ok = false;
break;
}
}
if (!ok) {
mp_free(x);
continue; /* try a new x */
}
/*
* We've found a viable x. Make the final output value.
*/
mp_int *toret = mp_new(s->bits);
mp_mul_into(toret, x, s->factor);
mp_add_into(toret, toret, s->addend);
mp_free(x);
return toret;
}
}
void pcs_inspect(PrimeCandidateSource *pcs, mp_int **limit_out,
mp_int **factor_out, mp_int **addend_out)
{
*limit_out = mp_copy(pcs->limit);
*factor_out = mp_copy(pcs->factor);
*addend_out = mp_copy(pcs->addend);
}
unsigned pcs_get_bits(PrimeCandidateSource *pcs)
{
return pcs->bits;
}
unsigned pcs_get_bits_remaining(PrimeCandidateSource *pcs)
{
return mp_get_nbits(pcs->limit);
}
mp_int *pcs_get_upper_bound(PrimeCandidateSource *pcs)
{
/* Compute (limit-1) * factor + addend */
mp_int *tmp = mp_mul(pcs->limit, pcs->factor);
mp_int *bound = mp_add(tmp, pcs->addend);
mp_free(tmp);
mp_sub_into(bound, bound, pcs->factor);
return bound;
}
mp_int **pcs_get_known_prime_factors(PrimeCandidateSource *pcs, size_t *nout)
{
*nout = pcs->nkps;
return pcs->kps;
}