-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
472 lines (407 loc) · 14.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#include "bbox_queue.h"
#include "cuda_runtime_api.h"
#include "infer_math.h"
#include "infer_utils.h"
#include "inner_config.h"
#include "tensorrt_logging.h"
#include "utils.h"
#include <NvInfer.h>
#include <algorithm>
#include <atomic>
#include <chrono>
#include <iostream>
#include <mutex>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#include <vector>
// using ffmpeg
#ifdef __cplusplus
extern "C" {
#endif
#include "libavcodec/avcodec.h"
#include "libavformat/avformat.h"
#include "libavutil/imgutils.h"
#include "libswscale/swscale.h"
#ifdef __cplusplus
}
#endif
AVPixelFormat get_pix_fmt(AVPixelFormat fmt) {
switch (fmt) {
case AV_PIX_FMT_YUVJ420P:
return AV_PIX_FMT_YUV420P;
case AV_PIX_FMT_YUVJ422P:
return AV_PIX_FMT_YUV422P;
case AV_PIX_FMT_YUVJ411P:
return AV_PIX_FMT_YUV411P;
case AV_PIX_FMT_YUVJ444P:
return AV_PIX_FMT_YUVJ444P;
default:
return fmt;
}
}
#define DUMP_IMAGE 1
#define RUN_3D 1
#define SAFE_FREE(x) \
do { \
if (x != nullptr) { \
free(x); \
x = nullptr; \
} \
} while (false);
#define SET_CPU_AFFINITY(x, returnVal) \
do { \
cpu_set_t mask; \
cpu_set_t get; \
CPU_ZERO(&mask); \
CPU_SET(x, &mask); \
if (sched_setaffinity(0, sizeof(cpu_set_t), &mask) == -1) { \
FUNC_LOG_INFO("warning: could not set cpu affinity..."); \
pthread_exit(returnVal); \
} \
} while (false);
#define CHECK(status) \
do { \
auto ret = (status); \
if (ret != 0) { \
std::cerr << "cuda failure: " << ret << std::endl; \
abort(); \
} \
} while (false);
std::atomic<bool> cameraThreadStopFlag(false);
std::atomic<bool> frameThreadStopFlag(false);
std::atomic<bool> generateThreadStopFlag(false);
std::atomic<bool> inferenceThreadStopFlag(false);
std::atomic<bool> hasDrawedRectangle(false);
std::atomic<bool> useCameraFlag(true);
std::mutex bufferMtx;
cv::Mat sharedBuf(SRC_IMAGE_HEIGHT, SRC_IMAGE_WIDTH, CV_8UC3);
bboxQue bboxQueue;
int cpuNumber = 0; // cpu数
static Logger gLogger;
void signalHandler(int signal) {
cameraThreadStopFlag = true;
frameThreadStopFlag = true;
generateThreadStopFlag = true;
inferenceThreadStopFlag = true;
}
void *draw3DBboxThread(void *arg) {
SET_CPU_AFFINITY(0, NULL);
while (true) {
std::vector<cv::Point *> pointArrays;
FUNC_LOG_INFO("QUEUE SIZE %d", bboxQueue.size());
while (!bboxQueue.empty()) {
Bbox3D bbox = {0};
bboxQueue.pop(bbox);
pointArrays.push_back(bbox.points);
}
if (!pointArrays.empty()) {
FUNC_LOG_INFO("POINT ARRAY SIZE %d", pointArrays.size());
{
std::lock_guard<std::mutex> lock(bufferMtx);
int npt[] = {8};
for (auto p : pointArrays) {
cv::polylines(sharedBuf, &p, npt, 1, true,
cv::Scalar(0.0, 0.0, 255.0), 2);
}
cv::imshow("Camera", sharedBuf);
}
}
if (cv::waitKey(1) == 'q') {
break;
}
}
cv::destroyAllWindows();
FUNC_LOG_INFO("EXIT 3DBOX DRAWING THREAD");
pthread_exit(NULL);
}
void *imageThread(void *arg) {
SET_CPU_AFFINITY(0, NULL);
cv::Mat frame;
char *imagePath = (char *)arg;
frame = cv::imread(imagePath);
while (!cameraThreadStopFlag) {
frame = transposeInferImage(frame, 640, 640);
{
std::lock_guard<std::mutex> lock(bufferMtx);
frame.copyTo(sharedBuf);
hasDrawedRectangle = false;
}
}
printf("EXIT IMAGE THREAD");
pthread_exit(NULL);
}
void *cameraThread(void *arg) {
SET_CPU_AFFINITY(0, NULL);
static int flag = 0;
int cnt = 0;
cv::Mat frame;
cv::VideoCapture capture(0);
if (!capture.isOpened()) {
return NULL;
}
while (!cameraThreadStopFlag) {
flag++;
capture.read(frame);
if (frame.empty()) {
FUNC_LOG_INFO("CAMERA CAPTURE DATA EMPTY");
break;
}
frame = transposeInferImage(frame, 640, 640);
{
std::lock_guard<std::mutex> lock(bufferMtx);
frame.copyTo(sharedBuf);
hasDrawedRectangle = false;
}
}
frame.release();
capture.release();
FUNC_LOG_INFO("EXIT CAMERA CAPTURE THREAD");
pthread_exit(NULL);
}
void *inferenceThread(void *arg) {
SET_CPU_AFFINITY(1, NULL);
char **modelPackage = (char **)arg;
// init classification model
size_t classificationSize = 0;
char *trtModelStreamClassification =
loadEngine(modelPackage[0], classificationSize);
if (trtModelStreamClassification) {
std::cout << "load classification model successfully" << std::endl;
}
nvinfer1::IRuntime *runtimeClassification =
nvinfer1::createInferRuntime(gLogger);
assert(runtimeClassification != nullptr);
nvinfer1::ICudaEngine *engineClassification =
runtimeClassification->deserializeCudaEngine(trtModelStreamClassification,
classificationSize);
assert(engineClassification != nullptr);
nvinfer1::IExecutionContext *contextClassification =
engineClassification->createExecutionContext();
assert(contextClassification != nullptr);
delete[] trtModelStreamClassification;
auto classification_out_dims = engineClassification->getBindingDimensions(1);
auto classification_output_size = 1;
for (int j = 0; j < classification_out_dims.nbDims; j++) {
classification_output_size *= classification_out_dims.d[j];
}
FUNC_LOG_INFO("classification model output size: %d",
classification_output_size);
static float *prob = new float[classification_output_size];
float *blob;
int cnt = 0;
// init regression model
#if RUN_3D
size_t regressionSize = 0;
char *trtModelStreamRegression = loadEngine(modelPackage[1], regressionSize);
if (trtModelStreamRegression) {
std::cout << "load regression model successfully" << std::endl;
}
std::cout << regressionSize << std::endl;
nvinfer1::IRuntime *runtimeRegression = nvinfer1::createInferRuntime(gLogger);
assert(runtimeRegression != nullptr);
nvinfer1::ICudaEngine *engineRegression =
runtimeRegression->deserializeCudaEngine(trtModelStreamRegression,
regressionSize);
assert(engineRegression != nullptr);
nvinfer1::IExecutionContext *contextRegression =
engineRegression->createExecutionContext();
assert(contextRegression != nullptr);
delete[] trtModelStreamRegression;
// three output head for orient, conf, dim
size_t regress_out_size[3] = {1, 1, 1};
for (int j = 0; j < 3; j++) {
auto out_dims = engineRegression->getBindingDimensions(j + 1);
for (int k = 0; k < out_dims.nbDims; k++) {
regress_out_size[j] *= out_dims.d[k];
}
}
FUNC_LOG_INFO("regression model output size: %d, %d, %d", regress_out_size[0],
regress_out_size[1], regress_out_size[2]);
float *orientList;
float *confList;
float *dimList;
#endif
while (!inferenceThreadStopFlag) {
cv::Mat resize_image;
{
std::lock_guard<std::mutex> lock(bufferMtx);
resize_image = sharedBuf;
}
blob = blobFromImage(resize_image);
auto start = std::chrono::system_clock::now();
classificationInference(*contextClassification, blob, prob,
classification_output_size, resize_image.size());
FUNC_LOG_INFO("prob[1]: %f", prob[1]);
std::vector<xyxyBox> result =
classificationProbDecode(prob, classification_output_size);
#if RUN_3D
int resSize = result.size();
orientList = new float[resSize * regress_out_size[0]];
confList = new float[resSize * regress_out_size[1]];
dimList = new float[resSize * regress_out_size[2]];
depthInference(*contextRegression, resize_image, result, regress_out_size,
orientList, confList, dimList);
// std::cout << "depthinference" << std::endl;
// for (int i = 0; i < resSize; i++) {
// std::cout << orientList[i * regress_out_size[0]] << ' '
// << confList[i * regress_out_size[1]] << ' '
// << dimList[i * regress_out_size[2]] << std::endl;
// }
std::vector<std::vector<std::vector<int>>> location3Dlist = depthProbDecode(
resSize, regress_out_size, orientList, confList, dimList, result);
FUNC_LOG_INFO("3d boxes size: %d", location3Dlist.size());
delete[] orientList;
delete[] confList;
delete[] dimList;
#endif
auto end = std::chrono::system_clock::now();
printf("inference fps: %.2f fps\n",
(1000.0 /
(std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
.count())));
if (!hasDrawedRectangle) {
hasDrawedRectangle = true;
#if RUN_3D
for (auto location : location3Dlist) {
cv::line(resize_image, cv::Point(location[0][0], location[0][1]),
cv::Point(location[2][0], location[2][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[4][0], location[4][1]),
cv::Point(location[6][0], location[6][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[0][0], location[0][1]),
cv::Point(location[4][0], location[4][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[2][0], location[2][1]),
cv::Point(location[6][0], location[6][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[1][0], location[1][1]),
cv::Point(location[3][0], location[3][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[1][0], location[1][1]),
cv::Point(location[5][0], location[5][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[7][0], location[7][1]),
cv::Point(location[3][0], location[3][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[7][0], location[7][1]),
cv::Point(location[5][0], location[5][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[0][0], location[0][1]),
cv::Point(location[1][0], location[1][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[2][0], location[2][1]),
cv::Point(location[3][0], location[3][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[4][0], location[4][1]),
cv::Point(location[5][0], location[5][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
cv::line(resize_image, cv::Point(location[7][0], location[7][1]),
cv::Point(location[6][0], location[6][1]),
cv::Scalar(0.0, 0.0, 255.0), 2);
}
#endif
for (auto rect : result) {
cv::rectangle(resize_image, cv::Point(rect.left, rect.top),
cv::Point(rect.right, rect.bottom),
cv::Scalar(0.0, 255.0, 0.0), 2);
}
#if DUMP_IMAGE
char dumpPath[100] = "./dump.jpg";
cv::imwrite(dumpPath, resize_image);
FUNC_LOG_INFO("%s, %d, DUMP IMAGE: %s\n", __func__, __LINE__, dumpPath);
#endif
}
{
std::lock_guard<std::mutex> lock(bufferMtx);
resize_image.copyTo(sharedBuf);
}
resize_image.release();
delete[] blob;
// cv::imshow("Camera", resize_image);
}
delete[] prob;
contextClassification->destroy();
engineClassification->destroy();
runtimeClassification->destroy();
#if RUN_3D
contextRegression->destroy();
engineRegression->destroy();
runtimeRegression->destroy();
#endif
sharedBuf.release();
printf("EXIT INFERENCE THREAD");
pthread_exit(NULL);
}
void *showThread(void *arg) {
while (true) {
{
std::lock_guard<std::mutex> lock(bufferMtx);
cv::imshow("3D Detection", sharedBuf);
// cv::imwrite("./dump.jpg", sharedBuf);
}
if (cv::waitKey(1) == 'q') {
break;
}
}
cv::destroyAllWindows();
printf("EXIT SHOW THREAD");
pthread_exit(NULL);
}
void dumpUchar() {
char savePath[100];
int cnt = 0;
while (!frameThreadStopFlag) {
sprintf(savePath, "./uchar_frame_%d.jpg", (++cnt) % 25);
{
std::lock_guard<std::mutex> lock(bufferMtx);
cv::imwrite(savePath, sharedBuf);
}
}
}
int main(int argc, char *args[]) {
switch (argc) {
case 3: {
std::cout << "ruuning in the camera way" << std::endl;
useCameraFlag = true;
break;
}
case 4: {
std::cout << "running in the image way" << std::endl;
useCameraFlag = false;
break;
}
default: {
std::cerr << "input format error.\nrun in camera "
"model:\nexecpath/to/classification model path/to/regression "
"model\n\nrun in image model:\nexec path/to/classification "
"model path/to/regression model path/to/image"
<< std::endl;
return -1;
}
}
for (int i = 1; i < argc; i++) {
printf("load file: %s\n", args[i]);
}
signal(SIGINT, signalHandler);
cudaSetDevice(0);
cv::namedWindow("3D Detection", cv::WINDOW_NORMAL);
pthread_t data;
pthread_t infer;
pthread_t show;
if (useCameraFlag) {
pthread_create(&data, NULL, cameraThread, NULL);
} else {
pthread_create(&data, NULL, imageThread, args[3]);
}
pthread_create(&infer, NULL, inferenceThread, args + 1);
pthread_create(&show, NULL, showThread, NULL);
pthread_join(data, NULL);
pthread_join(infer, NULL);
pthread_join(show, NULL);
return 0;
}