forked from susanli2016/Machine-Learning-with-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_preprocessing.py
35 lines (29 loc) · 1.13 KB
/
data_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Import the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Import the dataset
dataset = pd.read_csv('data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
# Taking care of missing data
from sklearn.preprocessing import Imputer
imputer=Imputer(missing_values='NaN', strategy='mean', axis=0)
imputer=imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:,0] = labelencoder_X.fit_transform(X[:,0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
# Splitting the dataset into the training set and test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=42)
# Feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)