Skip to content

Latest commit

 

History

History
155 lines (134 loc) · 9.17 KB

README.md

File metadata and controls

155 lines (134 loc) · 9.17 KB

EFTFit

This repository holds the custom files needed to run a EFT fit topcoffea datacards.

New fancy install script

To quickly install this repo, simply run:
wget -O - https://raw.githubusercontent.com/TopEFT/EFTFit/master/install.sh | sh
NOTE: This will install the TopEFT custom CombineHarvester fork. If you need to use -s -1 as implemented in combine, you'll need to install the main CombineHarvester repo.

Setting up

In order to run combine, you will need to get the appropriate CMSSW release and to clone several repositories.

Set up the CMSSW release

Install CMSSW_10_2_13 OUTSIDE OF YOUR TOPCOFFEA DIR AND NOT IN CONDA

export SCRAM_ARCH=slc7_amd64_gcc700
scram project CMSSW CMSSW_10_2_13
cd CMSSW_10_2_13/src
scram b -j8

Get the Combine repository

Currently working with tag v8.2.0:

git clone [email protected]:cms-analysis/HiggsAnalysis-CombinedLimit.git HiggsAnalysis/CombinedLimit
cd HiggsAnalysis/CombinedLimit/
git checkout v8.2.0
cd -
scram b -j8

Get the EFTFit repository

cd $CMSSW_BASE/src/
git clone https://github.com/TopEFT/EFTFit.git EFTFit
scram b -j8

Get the CombineHarvester repository

This package is designed to be used with the CombineHarvester fork. This might cause errors when compiling, but you can safely ignore them.

git clone [email protected]:cms-analysis/CombineHarvester.git
cd CombineHarvester
git checkout 128e41eb
scram b -j8

Fitting

Now we can actually run combine to perform the fits.

Running the fits

  • Make sure you have done a cmsenv inside of CMSSW_10_2_13/src/ (wherever you have it installed)
  • Enter CMSSW_10_2_13/src/EFTFit/Fitter/test
  • Copy all .txt and .root files created by python analysis/topEFT/datacard_maker.py (in the histos directory of your toplevel topcoffea directory)
  • Run combineCards.py to merge them all into one txt file. DO NOT merge multiple variables for the same channel, as this would artifically double the statistics!
    • E.g. njets only: combineCards.py ttx_multileptons-*{b,p,m}.txt > combinedcard.txt
    • E.g. ptbl for all categories but 3l off-shell Z (using HT instead): combineCards.py ttx_multileptons-2lss_*ptbl.txt ttx_multileptons-3l_onZ*ptbl.txt ttx_multileptons-3l_*_offZ_*ht.txt ttx_multileptons-4l_*ptbl.txt > combinedcard.txt
    • TOP-22-006 selection (old mehtod): combineCards.py ttx_multileptons-{2,4}*lj0pt.txt ttx_multileptons-3l_{p,m}_offZ*lj0pt.txt ttx_multileptons-3l_onZ_1b_*ptz.txt ttx_multileptons-3l_onZ_2b_{4,5}j*ptz.txt ttx_multileptons-3l_onZ_2b_{2,3}j*lj0pt.txt > combinedcard.txt
    • TOP-22-006 selection (new mehtod): The latest tools should produce the correct lj0pt or ptz datacards for the corresponding categoes. Therefore, you can simply run: combineCards.py ttx_multileptons-*.txt > combinedcard.txt
  • NOTE: combine uses a lot of recursive function calls to create the workspace. When running with systematics, this can cause a segmentation fault. You must run ulimit -s unlimited once per session to avoid this.
  • Run the following command to generate the workspace file:
    text2workspace.py combinedcard.txt -o wps.root -P EFTFit.Fitter.AnomalousCouplingEFTNegative:analiticAnomalousCouplingEFTNegative --X-allow-no-background --for-fits --no-wrappers --X-pack-asympows --optimize-simpdf-constraints=cms
    
    You can Specify a subset of WCs using --PO, e.g.:
    text2workspace.py combinedcard.txt -o wps.root -P EFTFit.Fitter.AnomalousCouplingEFTNegative:analiticAnomalousCouplingEFTNegative --X-allow-no-background --PO cpt,ctp,cptb,cQlMi,cQl3i,ctlTi,ctli,cbW,cpQM,cpQ3,ctei,cQei,ctW,ctlSi,ctZ,ctG
    
  • Run combine with our EFTFit tools
    • Example:
      python -i ../scripts/EFTFitter.py
      fitter.batch1DScanEFT(basename='.081921.njet.ptbl.Float', batch='condor', workspace='wps.root', other=['-t', '-1'])
      
    • Once all jobs are finished, run the following (again inside python -i ../scripts/EFTFitter.py) to collect them in the EFTFit/Fitter/fit_files folder:
      fitter.batchRetrieve1DScansEFT(basename='.081921.njet.ptbl.Float', batch='condor')
      

Plot making

To make simple 1D plots, use:

python -i ../scripts/EFTPlotter.py
plotter.BatchOverlayLLPlot1DEFT(basename1_lst=['.081121.njet.16wc.Float'], basename2_lst=['.EFT.SM.Freeze'], wcs=[], log=False, final=False, titles=['Others profiled', 'Others fixed to SM'])

To make comparison plots (e.g. njets vs. njets+ptbl):

python -i ../scripts/EFTPlotter.py
plotter.BestScanPlot(basename_float_lst='.081721.njet.Float', basename_freeze_lst='.081821.njet.ptbl.Float', filename='_float_njet_ptbl', titles=['N_{jet} prof.', 'N_{jet}+p_{T}(b+l) prof.'], printFOM=True)

Steps for reproducing the "official" TOP-22-006 workspace:

  1. Combine the cards: Inside of the EFTFit repo, copy the relevant cards (.txt files) and templates (.root files) for the categories that you want to make a worksapce for into the same directory. For the TOP-22-006 results, this should correspond to the appropriate mix-and-match combination of ptz and lj0pt that can be obtained with the datacards_post_processing.py script (as explained in the "To reproduce the TOP-22-006 histograms and datacards" section of the topcoffea readme). Then from within this directory (that contains only the relevant cards/templates and no extraneous cards/templates), run combineCards.py ttx_multileptons-*.txt > combinedcard.txt to make a combined card.

  2. Copy your selected WC file that was made with your cards (called selectedWCs.txt) to somewhere that is accessible from where you will be running the text2workspace step.

  3. Make the workspace by running the following command. Note that this command can take ~2 hours up to about ~8 hours or more (depending on where it is run).

    text2workspace.py combinedcard.txt -o yourworkspacename.root -P EFTFit.Fitter.AnomalousCouplingEFTNegative:analiticAnomalousCouplingEFTNegative --X-allow-no-background --for-fits --no-wrappers --X-pack-asympows --optimize-simpdf-constraints=cms --PO selectedWCs=/path/to/your/selectedWCs.txt
    

Making impact plots

Impact plots must be done in three stages:

Initial fit

Run

fitter.ImpactInitialFit(workspace='ptz-lj0pt_fullR2_anatest17_noAutostats_withSys.root', wcs=[])

to produce the initial fits. A blank wcs will run over all WCs.

Nuisance fit

Run

fitter.ImpactNuisance(workspace='ptz-lj0pt_fullR2_anatest17_noAutostats_withSys.root', wcs=[])

to fit each NP. A blank wcs will run over all WCs.

Produce plots

Run

fitter.ImpactCollect(workspace='ptz-lj0pt_fullR2_anatest17_noAutostats_withSys.root', wcs=[])

to collect all jobs and create the final pdf plots. A blank wcs will run over all WCs.

Making postfit

Note: If you are making Asimov data postfit, the best way to approach this is to simply create a seperate Asimov workspace with only Asimov datacards and perform the exact same steps in this section. (For topeft analysis group, turn off --unblind option to obtain Asimov datacards)

  1. Copy your workspace into /Fitter/test directory, make sure you activate cmsenv

Making the postfit root file

  1. In Fitter/test run MultidimFit to make postfit for the workspace wsp.root with the following command:
time combine --algo none --cminPreScan --cminDefaultMinimizerStrategy=0 -P ctW --trackParameters ctW,ctZ,ctp,cpQM,ctG,cbW,cpQ3,cptb,cpt,cQl3i,cQlMi,cQei,ctli,ctei,ctlSi,ctlTi,cQq13,cQq83,cQq11,ctq1,cQq81,ctq8,ctt1,cQQ1,cQt8,cQt1 --floatOtherPOIs 1 --setParameters ctW=0,ctZ=0,ctp=0,cpQM=0,ctG=0,cbW=0,cpQ3=0,cptb=0,cpt=0,cQl3i=0,cQlMi=0,cQei=0,ctli=0,ctei=0,ctlSi=0,ctlTi=0,cQq13=0,cQq83=0,cQq11=0,ctq1=0,cQq81=0,ctq8=0,ctt1=0,cQQ1=0,cQt8=0,cQt1=0 -M MultiDimFit -d wsp.root -v 2 --saveFitResult -n multidimfit

A file named multidimfit.root will be made in the Fitter/test directory.

Constructing postfit for all signal regions with condor

  1. Add the file multidimfit.root to ../../script/structMaker.C, and change option do_postfit to true in the script.
  2. Open ../../condor/submit script then queue the corresponding number of signal regions, which is 11 for top22-006. (Make sure all the necessary scripts to run condor have the correct directory to eventually point to your ../../script/structMaker.C.)
  3. In Fitter/test directory, make a new directory called fit_results, and inside, make SR_postfit and SR_sum_postfit two directories. (The scripts are set already to read these directories otherwise it would fail the command.)
  4. Make a directory in fit_results called condor/logs.
  5. Run the condor jobs through:
condor_submit ../../condor/submit
  1. When the jobs are finished, there will be 11 (or whatever number of signal regions your analysis has) SR files in SR_postfit, and the same number of files in SR_sum_postfit. (Note that file naming would start from zero)

Making the SR plots

  1. Go into test/fit_results directory, and run:
root -b -l -q '../../scripts/plot_maker.C("")'

The corresponding plots will be made in fit_results/plots

Changing WCs to other values

For step 2. the command is used to fit all WCs = 0 case. If you want to set certain WC value to non-zero, simply change --setParameters option.