forked from sun11/QTFaceRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacedetect.cpp
114 lines (93 loc) · 5.23 KB
/
facedetect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#include <QtGui>
#include "facedetect.h"
FaceDetect::FaceDetect()
{
cascadeFile = "haarcascade_frontalface_alt2.xml";
cascade = (CvHaarClassifierCascade *) cvLoad(cascadeFile.toUtf8());
flags = CV_HAAR_FIND_BIGGEST_OBJECT|CV_HAAR_DO_ROUGH_SEARCH;
// Storage for the rectangles detected
storage = cvCreateMemStorage(0);
CvSize size;
size.width = 70;
size.height = 80;
faceImage = cvCreateImage(size,IPL_DEPTH_8U,CV_8UC1);
}
FaceDetect::~FaceDetect() {
if(cascade) cvReleaseHaarClassifierCascade(&cascade);
}
// Load a new classifier cascade, we unload first the previous classifier
void FaceDetect::setCascadeFile(QString cascadeFrom) {
cascadeFile = cascadeFrom;
if(cascade) cvReleaseHaarClassifierCascade(&cascade);
cascade = (CvHaarClassifierCascade *) cvLoad(cascadeFile.toUtf8());
}
QString FaceDetect::cascadeName() const {
return cascadeFile;
}
/* Possible values for flags on cvHaarDetectObjects. It can be a combination of zero or more of the following values:
* CV_HAAR_SCALE_IMAGE- for each scale factor used the function will downscale the image rather than "zoom"
the feature coordinates in the classifier cascade. Currently, the option can only be used alone,
i.e. the flag can not be set together with the others.
* CV_HAAR_DO_CANNY_PRUNING- If it is set, the function uses Canny edge detector to reject some image regions
that contain too few or too much edges and thus can not contain the searched object. The particular
threshold values are tuned for face detection and in this case the pruning speeds up the processing.
* CV_HAAR_FIND_BIGGEST_OBJECT- If it is set, the function finds the largest object (if any) in the image.
That is, the output sequence will contain one (or zero) element(s).
* CV_HAAR_DO_ROUGH_SEARCH- It should be used only when CV_HAAR_FIND_BIGGEST_OBJECT is set and min_neighbors > 0.
If the flag is set, the function does not look for candidates of a smaller size as soon as it has found the
object (with enough neighbor candidates) at the current scale. Typically, when min_neighbors is fixed, the
mode yields less accurate (a bit larger) object rectangle than the regular single-object mode
(CV_HAAR_FIND_BIGGEST_OBJECT), but it is much faster, up to an order of magnitude. A greater value of
min_neighbors may be specified to improve the accuracy.
Note, that in single-object mode CV_HAAR_DO_CANNY_PRUNING does not improve performance much and can even slow down the
processing. */
void FaceDetect::setFlags(int flagsFrom) {
flags = flagsFrom;
}
QVector<QRect> FaceDetect::detectFaces(IplImage *cvImage) {
QVector<QRect> listRect;
CvRect *rect = NULL;
double scale = 1.2;
// Create a gray scale image (1 channel) to turn it into a small image that we send to cvHaarDetectObjects to process
IplImage *grayImage = cvCreateImage(cvSize(cvImage->width, cvImage->height), cvImage->depth, CV_8UC1);
IplImage *smallImage = cvCreateImage(cvSize(cvRound(cvImage->width/scale), cvRound(cvImage->height/scale)),
cvImage->depth, CV_8UC1);
cvCvtColor(cvImage, grayImage, CV_BGR2GRAY);
cvResize(grayImage, smallImage);
cvEqualizeHist(smallImage, smallImage); // Grays smoothing (normaliza brillo, incrementa contraste)
if(cascade) { // It isn't necessary in this context, because cascade exist if we reach this point
double timeElapsed = (double)cvGetTickCount();
CvSeq *faces = cvHaarDetectObjects(smallImage, cascade, storage, scale, 0, flags, cvSize(30, 30));
timeElapsed = (double)cvGetTickCount() - timeElapsed;
printf( "detection time = %g ms\n", timeElapsed/((double)cvGetTickFrequency()*1000) );
//qDebug() << QString("detection time = %1").arg(timeElapsed/((double)cvGetTickFrequency()*1000));
for(int i = 0; i < faces->total; i++) {
rect = (CvRect*)cvGetSeqElem(faces, i);
listRect.append(QRect(rect->x * scale, rect->y * scale, rect->width * scale, rect->height * scale));
region = *rect;
// region.x = region.x*scale + 15;
// region.y = region.y*scale + 10;
// region.width = region.width*scale - 2*15;
// region.height = region.height*scale - 10;
region.x = region.x*scale + 6;
region.y = region.y*scale + 5;
region.width = region.width*scale - 2*6;
region.height = region.height*scale - 5;
if (region.width < 1)
region.width = 1;
if (region.height < 1)
region.height = 1;
printf("%dX%d\n",region.width,region.height);
cvSetImageROI(grayImage,region);
cvResize(grayImage,faceImage,CV_INTER_AREA);
cvEqualizeHist(faceImage,faceImage);
//saveByClick();
// saveTimer = new QTimer(this);
// connect(saveTimer,SIGNAL(timeout()),this,SLOT(saveFaceImage() ));
// saveTimer->start(2000);
}
}
cvReleaseImage(&grayImage);
cvReleaseImage(&smallImage);
return listRect;
}