-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_bidastereo.py
388 lines (335 loc) · 12.8 KB
/
train_bidastereo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import os
import torch
import torch.optim as optim
from munch import DefaultMunch
import json
from pytorch_lightning.lite import LightningLite
from torch.cuda.amp import GradScaler
from bidastereo.train_utils.utils import (
run_test_eval,
save_ims_to_tb,
count_parameters,
)
from bidastereo.train_utils.logger import Logger
from bidastereo.models.core.bidastereo import BiDAStereo
from bidastereo.evaluation.core.evaluator import Evaluator
from bidastereo.train_utils.losses import sequence_loss
import bidastereo.datasets.bidastereo_datasets as datasets
def fetch_optimizer(args, model):
"""Create the optimizer and learning rate scheduler"""
for name, param in model.named_parameters():
if any([key in name for key in ['raft']]):
param.requires_grad_(False)
optimizer = optim.AdamW(
model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=1e-8
)
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
args.lr,
args.num_steps + 100,
pct_start=0.01,
cycle_momentum=False,
anneal_strategy="linear",
)
return optimizer, scheduler
def forward_batch(batch, model, args):
output = {}
disparities = model(
batch["img"][:, :, 0],
batch["img"][:, :, 1],
iters=args.train_iters,
test_mode=False,
)
num_traj = len(batch["disp"][0])
for i in range(num_traj):
seq_loss, metrics = sequence_loss(
disparities[:, i], batch["disp"][:, i, 0], batch["valid_disp"][:, i, 0]
)
output[f"disp_{i}"] = {"loss": seq_loss / num_traj, "metrics": metrics}
output["disparity"] = {
"predictions": torch.cat(
[disparities[-1, i, 0] for i in range(num_traj)], dim=1).detach(),
}
return output
class Lite(LightningLite):
def run(self, args):
self.seed_everything(0)
# eval_dataloader_dr = datasets.DynamicReplicaDataset(
# split="valid", sample_len=40, only_first_n_samples=1
# )
# eval_dataloader_sintel_clean = datasets.SequenceSintelStereo(dstype="clean")
# eval_dataloader_sintel_final = datasets.SequenceSintelStereo(dstype="final")
eval_dataloaders = [
# ("sintel_clean", eval_dataloader_sintel_clean),
# ("sintel_final", eval_dataloader_sintel_final),
# ("dynamic_replica", eval_dataloader_dr),
]
evaluator = Evaluator()
eval_vis_cfg = {
"visualize_interval": 0, # Use 0 for no visualization
"exp_dir": args.ckpt_path,
}
eval_vis_cfg = DefaultMunch.fromDict(eval_vis_cfg, object())
evaluator.setup_visualization(eval_vis_cfg)
if args.name == 'bidastereo':
model = BiDAStereo(
mixed_precision=args.mixed_precision,
)
else:
raise ValueError("Wrong Model!")
with open(args.ckpt_path + "/meta.json", "w") as file:
json.dump(vars(args), file, sort_keys=True, indent=4)
model.cuda()
train_loader = datasets.fetch_dataloader(args)
train_loader = self.setup_dataloaders(train_loader, move_to_device=False)
logging.info(f"Train loader size: {len(train_loader)}")
optimizer, scheduler = fetch_optimizer(args, model)
print("Parameter Count:", {count_parameters(model)})
logging.info(f"Parameter Count: {count_parameters(model)}")
total_steps = 0
logger = Logger(model, scheduler, args.ckpt_path)
folder_ckpts = [
f
for f in os.listdir(args.ckpt_path)
if not os.path.isdir(f) and f.endswith(".pth") and not "final" in f
]
if len(folder_ckpts) > 0:
ckpt_path = sorted(folder_ckpts)[-1]
ckpt = self.load(os.path.join(args.ckpt_path, ckpt_path))
logging.info(f"Loading checkpoint {ckpt_path}")
if "model" in ckpt:
model.load_state_dict(ckpt["model"])
else:
model.load_state_dict(ckpt)
if "optimizer" in ckpt:
logging.info("Load optimizer")
optimizer.load_state_dict(ckpt["optimizer"])
if "scheduler" in ckpt:
logging.info("Load scheduler")
scheduler.load_state_dict(ckpt["scheduler"])
if "total_steps" in ckpt:
total_steps = ckpt["total_steps"]
logging.info(f"Load total_steps {total_steps}")
elif args.restore_ckpt is not None:
assert args.restore_ckpt.endswith(".pth") or args.restore_ckpt.endswith(
".pt"
)
logging.info("Loading checkpoint...")
strict = True
state_dict = self.load(args.restore_ckpt)
if "model" in state_dict:
state_dict = state_dict["model"]
if list(state_dict.keys())[0].startswith("module."):
state_dict = {
k.replace("module.", ""): v for k, v in state_dict.items()
}
model.load_state_dict(state_dict, strict=strict)
logging.info(f"Done loading checkpoint")
model, optimizer = self.setup(model, optimizer, move_to_device=False)
model.cuda()
model.train()
model.module.module.freeze_bn() # We keep BatchNorm frozen
save_freq = args.save_freq
scaler = GradScaler(enabled=args.mixed_precision)
should_keep_training = True
global_batch_num = 0
epoch = -1
while should_keep_training:
epoch += 1
for i_batch, batch in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
if batch is None:
print("batch is None")
continue
for k, v in batch.items():
batch[k] = v.cuda()
assert model.training
output = forward_batch(batch, model, args)
loss = 0
logger.update()
for k, v in output.items():
if "loss" in v:
loss += v["loss"]
logger.writer.add_scalar(
f"live_{k}_loss", v["loss"].item(), total_steps
)
if "metrics" in v:
logger.push(v["metrics"], k)
if self.global_rank == 0:
if len(output) > 1:
logger.writer.add_scalar(
f"live_total_loss", loss.item(), total_steps
)
logger.writer.add_scalar(
f"learning_rate", optimizer.param_groups[0]["lr"], total_steps
)
global_batch_num += 1
self.barrier()
self.backward(scaler.scale(loss))
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
if total_steps < args.num_steps:
scheduler.step()
scaler.update()
total_steps += 1
if total_steps == args.finetune_step:
logging.info("All trainable parameters!")
for name, param in model.named_parameters():
param.requires_grad_(True)
if self.global_rank == 0:
if (i_batch >= len(train_loader) - 1) or (
total_steps == 1 and args.validate_at_start
):
ckpt_iter = "0" * (6 - len(str(total_steps))) + str(total_steps)
save_path = Path(
f"{args.ckpt_path}/model_{args.name}_{ckpt_iter}.pth"
)
save_dict = {
"model": model.module.module.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"total_steps": total_steps,
}
logging.info(f"Saving file {save_path}")
self.save(save_dict, save_path)
self.barrier()
if total_steps > args.num_steps:
should_keep_training = False
break
logger.close()
PATH = f"{args.ckpt_path}/{args.name}_final.pth"
torch.save(model.module.module.state_dict(), PATH)
test_dataloader_dr = datasets.DynamicStereoDataset(
split="test", sample_len=150, only_first_n_samples=1
)
test_dataloaders = [
("sintel_clean", eval_dataloader_sintel_clean),
("sintel_final", eval_dataloader_sintel_final),
("dynamic_replica", test_dataloader_dr),
]
run_test_eval(
args.ckpt_path,
"test",
evaluator,
model,
test_dataloaders,
logger.writer,
total_steps,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--name", default="bdastereo", help="name your experiment")
parser.add_argument("--restore_ckpt", help="restore checkpoint")
parser.add_argument("--ckpt_path", help="path to save checkpoints")
parser.add_argument(
"--mixed_precision", action="store_true", help="use mixed precision"
)
# Training parameters
parser.add_argument(
"--batch_size", type=int, default=6, help="batch size used during training."
)
parser.add_argument(
"--train_datasets",
nargs="+",
default=["things", "monkaa", "driving"],
help="training datasets.",
)
parser.add_argument("--lr", type=float, default=0.0004, help="max learning rate.")
parser.add_argument(
"--num_steps", type=int, default=80000, help="length of training schedule."
)
parser.add_argument(
"--finetune_step", type=int, default=40000, help="length of training schedule."
)
parser.add_argument(
"--image_size",
type=int,
nargs="+",
default=[320, 720],
help="size of the random image crops used during training.",
)
parser.add_argument(
"--train_iters",
type=int,
default=10,
help="number of updates to the disparity field in each forward pass.",
)
parser.add_argument(
"--wdecay", type=float, default=0.00001, help="Weight decay in optimizer."
)
parser.add_argument(
"--sample_len", type=int, default=5, help="length of training video samples"
)
parser.add_argument(
"--validate_at_start", action="store_true", help="validate the model at start"
)
parser.add_argument("--save_freq", type=int, default=100, help="save frequency")
parser.add_argument(
"--evaluate_every_n_epoch",
type=int,
default=1,
help="evaluate every n epoch",
)
parser.add_argument(
"--num_workers", type=int, default=6, help="number of dataloader workers."
)
# Validation parameters
parser.add_argument(
"--valid_iters",
type=int,
default=32,
help="number of updates to the disparity field in each forward pass during validation.",
)
# Data augmentation
parser.add_argument(
"--img_gamma", type=float, nargs="+", default=None, help="gamma range"
)
parser.add_argument(
"--saturation_range",
type=float,
nargs="+",
default=None,
help="color saturation",
)
parser.add_argument(
"--do_flip",
default=False,
choices=["h", "v"],
help="flip the images horizontally or vertically",
)
parser.add_argument(
"--spatial_scale",
type=float,
nargs="+",
default=[0, 0],
help="re-scale the images randomly",
)
parser.add_argument(
"--noyjitter",
action="store_true",
help="don't simulate imperfect rectification",
)
args = parser.parse_args()
Path(args.ckpt_path).mkdir(exist_ok=True, parents=True)
logging.basicConfig(
level=logging.INFO,
filename=args.ckpt_path + '/' + args.name + '.log',
filemode='a',
format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
)
from pytorch_lightning.strategies import DDPStrategy
Lite(
strategy=DDPStrategy(find_unused_parameters=True),
devices="auto",
accelerator="gpu",
precision=32,
).run(args)