Skip to content

Latest commit

 

History

History
46 lines (37 loc) · 1.54 KB

README.md

File metadata and controls

46 lines (37 loc) · 1.54 KB

Cloudera Data Science Workbench demos

Basic tour of Cloudera Data Science Workbench.

Workbench

There are 4 scripts provided which walk through the interactive capabilities of Cloudera Data Science Workbench.

  1. Basic Python visualizations (Python 2). Demonstrates:
  • Markdown via comments
  • Jupyter-compatible visualizations
  • Simple console sharing
  1. PySpark (Python 2). Demonstrates:
  • Easy connectivity to (kerberized) Spark in YARN client mode.
  • Access to Hadoop HDFS CLI (e.g. hdfs dfs -ls /).
  1. Tensorflow (Python 2). Demonstrates:
  • Ability to install and use custom packages (e.g. pip search tensorflow)
  1. R on Spark via Sparklyr (R). Demonstrates:
  • Use familiar dplyr with Spark using Sparklyr
  1. Advanced visualization with Shiny (R) Demonstrates:
  • Use of 'shiny' to provide interactive graphics inside CDSW

Jobs

We recommend setting up a "Nightly Analysis" job to illustrate how data scientists can easily automate their projects.

Setup instructions

Note: You only need to do this once.

  1. In a Python 2 Session:
! pip2 install --upgrade dask keras matplotlib pandas_highcharts protobuf tensorflow seaborn

Note, you must then stop the session and start a new Python session in order for all the packages to be seen.

  1. In an R Session:
install.packages('sparklyr')
install.packages('plotly')
install.packages("nycflights13")
install.packages("Lahman")
install.packages("mgcv")
install.packages('shiny') 
  1. Stop all sessions, then proceed.