-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimple_classifier.qmd
376 lines (294 loc) · 9.09 KB
/
Simple_classifier.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
---
title: "Simple Lung Cancer Classifier"
format: html
---
### Introduction
Machine learning is an effective tool to use in oncology. By training
models on simple phenotypic characteristics,
it's possible to train powerful classifiers for predicting
whether or not an individual may have cancer. These kinds of simple classifiers
can be used as early detection mechanisms, such that even from a small
amount of phenotypic descriptions, doctors can save time by quickly
sifting through the probability of a cancer being the root cause of
someone's illness.
Let's build a quick classifier for lung cancer based on an example [Kaggle dataset](https://www.kaggle.com/code/casper6290/lung-cancer-prediction-98#4-|-Data-Preprocessing).
```{r}
suppressPackageStartupMessages(
{
library(tidyverse)
library(tidymodels)
library(skimr)
library(themis)
}
)
```
Let's look at the data:
```{r}
url <- "https://storage.googleapis.com/kagglesdsdata/datasets/1623385/2668247/survey%20lung%20cancer.csv?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20240506%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20240506T191835Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2d244357131a33758f10bf7f3a83f5584f02ba69ab6ef5e31cb5f7c9cc3ea73922db7cb03bb47b5345455b27f4c25f4434be415327d7817b954933fe86aefc50b07fb4e6a0736238366f4a922a91615222be63de02ab687a9759eace7c59e62468deb656a3abafea85a93f0fd77fac708c2d37bece32da9669b5add662affdcfa40c73b9a8413d9039f207492544aba4ddd2f13baaa10a4b92327ea52db9322797db7113eeb00deb5ed073ddde2c58915c7b94710a2bec1dc03e4950fb20234837f03b0d4a7d5bbbbcde8c98eb2c1e7355acd3c179adf9f66d626c27ee70b46828f7d1e0b8222e446296fc3d813b8dfd42219bc6887266bf6bcc9c2ae2750aaa"
df <- read_csv(url)
```
```{r}
skim(df)
```
From this, we understand that almost all of the variables are binary "Y|N" questions,
with the exception of `age`. Let's see the distribution of data:
```{r}
df %>%
ggplot(aes(x=LUNG_CANCER)) +
geom_bar()
```
This is imbalanced data for sure, as we can see there are multiple
positive cases of lung cancer than negative. We'll keep this in mind
for later. For now, let's see if there's any noticeable distribution differences
in the two classes:
```{r}
df %>%
group_by(LUNG_CANCER) %>%
skim()
```
It looks like fatigue, yellow fingers, allergies, alcohol consumption, and swallowing
difficulty are are likely going to be particularly discriminant in differentiating
the diagnoses, because they have noticeable imbalance for each case in the histograms.
### First Model
Because this is a dataset with a lot of binary decisions,
it makes the most sense to use a decision-tree-based model for this
data. Additionally, we're going to use a validation set to test
our model so that we don't commit data leakage.
```{r}
train_test_split <- initial_validation_split(df, prop = c(0.60, 0.2), strata = LUNG_CANCER)
train <- training(train_test_split)
test <- testing(train_test_split)
val <- validation(train_test_split)
```
Now using `tidymodels`, build a workflow:
```{r}
rec <- recipe(LUNG_CANCER ~ ., data = train)
rf_mod <- rand_forest(mode = "classification", trees = 2000)
rf_flow <- workflow() %>%
add_recipe(rec) %>%
add_model(rf_mod)
rf_fit <- fit(rf_flow, train)
```
Our naive fit:
```{r}
classification_metrics <- metric_set(accuracy, f_meas)
rf_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
classification_metrics(truth = actual, estimate = .pred_class)
```
So on the validation set, we had high accuracy but a low F-score. Let's see why
that is:
```{r}
rf_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
conf_mat(truth = actual, estimate = .pred_class)
```
So even in this small case, we were leaning towards predicting someone
_without_ cancer as them having cancer, which is a false positive. Let's see if
we can remedy this at all by tuning some of the random forest parameters:
### Hyperparameter Tuning
```{r}
tune_spec <- rand_forest(
mtry = tune(),
trees = 1000,
min_n = tune()
) %>%
set_mode("classification") %>%
set_engine("ranger")
```
```{r}
folds <- vfold_cv(train)
```
```{r}
tune_rf_wf <- workflow() %>%
add_recipe(rec) %>%
add_model(tune_spec)
set.seed(12345)
tune_res <- tune_grid(
tune_rf_wf,
resamples = folds,
grid = 20,
metrics = classification_metrics
)
```
Now let's look at how the classification metrics over these tuned
parameters:
```{r}
tune_res %>%
collect_metrics() %>%
filter(.metric == "f_meas") %>%
arrange(-mean)
```
The F score hasn't improved by resampling, so instead, let's
over sample the minority case in our recipe:
### SMOTE for Imbalance
```{r}
rec %>%
step_dummy(GENDER) %>%
step_smote(LUNG_CANCER) -> rec_ov_sampled
```
Let's see how this affects the data:
```{r}
rec %>%
prep() %>%
juice() %>%
group_by(LUNG_CANCER) %>%
skim()
```
```{r}
rec %>%
prep() %>%
juice() %>%
ggplot(aes(x=LUNG_CANCER)) +
geom_bar() +
labs(title = "Lung Cancer diagnoses before SMOTE")
```
```{r}
rec_ov_sampled %>%
prep() %>%
juice() %>%
group_by(LUNG_CANCER) %>%
skim()
```
```{r}
rec_ov_sampled %>%
prep() %>%
juice() %>%
ggplot(aes(x=LUNG_CANCER)) +
geom_bar() +
labs(title = "Lung Cancer diagnoses after SMOTE")
```
Let's try the model out with this recipe instead...
```{r}
rf_smote_flow <- workflow() %>%
add_recipe(rec_ov_sampled) %>%
add_model(rf_mod)
rf_fit <- fit(rf_smote_flow, train)
```
```{r}
rf_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
conf_mat(truth = actual, estimate = .pred_class)
```
In this case, we've squeezed one better prediction out, and importantly it
was indeed a false negative that we converted to a true positive.
I believe it's probably time to try a different model — maybe RF isn't
best suited for this task.
### SVM
Support vector machines are also good classifiers. Let's try that out.
```{r}
svm_mod <- svm_linear(
cost = double(1),
margin = double(1)
) %>%
set_mode("classification")
```
```{r}
svm_smote_flow <- workflow() %>%
add_recipe(rec_ov_sampled) %>%
add_model(svm_mod)
svm_fit <- fit(svm_smote_flow, train)
```
```{r}
svm_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
conf_mat(truth = actual, estimate = .pred_class)
```
Interestingly, this model has more false negatives! Very bad for a field like cancer. Let's try to tune it:
```{r}
tune_spec <- svm_linear(
cost = tune(),
margin = tune()
) %>%
set_mode("classification")
tune_svm_wf <- workflow() %>%
add_recipe(rec_ov_sampled) %>%
add_model(tune_spec)
tune_res <- tune_grid(
tune_svm_wf,
resamples = folds,
grid = 50,
metrics = classification_metrics
)
```
```{r}
tune_res %>%
collect_metrics() %>%
filter(.metric == "f_meas") %>%
arrange(-mean)
```
It looks like there is an improvement in F score over the random forest,
so I'll stick with this model for now.
Let's try these best parameters:
```{r}
best <- tune_res %>% select_best(metric = "f_meas")
```
```{r}
svm_best <- svm_linear(
cost = best$cost,
margin = best$margin
) %>%
set_mode("classification")
svm_smote_flow <- workflow() %>%
add_recipe(rec_ov_sampled) %>%
add_model(svm_best)
svm_fit <- fit(svm_smote_flow, train)
```
```{r}
svm_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
classification_metrics(truth = actual, estimate = .pred_class)
```
Not much improvement!
### Another Model: Decision Tree `rpart`
I've had some success with this algorithm in the past, let's see if it works here:
```{r}
rpart_mod <- decision_tree(
mode = "classification"
)
```
```{r}
rpart_flow <- workflow() %>%
add_recipe(rec_ov_sampled) %>%
add_model(rpart_mod)
rpart_fit <- fit(svm_smote_flow, train)
```
```{r}
rpart_fit %>%
predict(val) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
conf_mat(truth = actual, estimate = .pred_class)
```
Not too much better, to be honest. For the sake of time, let's
settle on our best, the tuned SVM with a margin of `r best$margin` and cost of `r best$cost`.
```{r}
svm_fit %>%
predict(test) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
conf_mat(truth = actual, estimate = .pred_class)
```
```{r}
svm_fit %>%
predict(test) %>%
bind_cols(., actual = as.factor(val$LUNG_CANCER)) %>%
classification_metrics(truth = actual, estimate = .pred_class)
```
## Conclusion
One of the most important aspects of disease prediction,
especially for a disease like cancer, is that your models should
ultimately be attempting to reduce harmful errors. In this case,
false negatives would be devastating as they can be costly.
In this experiment, I found using the F-measure to be a good
metric as it let's us measure not just accuracy, but also the
likelihood of making such errors (called _Recall_ in this example).
The final model underperformed in this respect, but I'm sure given some
more time, there is an ideal model and parameter set that would
reduce false negatives.
```{r}
sessionInfo()
```