Skip to content

Latest commit

 

History

History

mtad_gat

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MTAD-GAT

Citekey ZhaoEtAl2020Multivariate
Source Code own
Learning type semi-supervised
Input dimensionality multivariate

Dependencies

  • python >= 3.7
  • torch

Notes

MTAD-GAT outputs anomaly scores for windows. The results require post-processing. The scores for each point can be assigned by aggregating the anomaly scores for each window the point is included in.

You can use the following code snippet for the post-processing step in TimeEval (default parameters directly filled in from the source code):

from timeeval.utils.window import ReverseWindowing
# post-processing for MTAD-GAT
def post_mtad_gat(scores: np.ndarray, args: dict) -> np.ndarray:
    window_size = args.get("hyper_params", {}).get("window_size", 20)
    return ReverseWindowing(window_size=window_size + 1).fit_transform(scores)

SR

This algorithm uses Spectral Residuals to clean training data. We used the code from this algorithm.