Skip to content

Latest commit

 

History

History
29 lines (21 loc) · 1.06 KB

README.md

File metadata and controls

29 lines (21 loc) · 1.06 KB

Histogram-based outlier score (HBOS)

Citekey GoldsteinDengel2012Histogrambased
Source Code https://github.com/yzhao062/pyod/blob/master/pyod/models/hbos.py
Learning type unsupervised
Input dimensionality multivariate

Parameters

  • n_bins: int, optional (default=10)
    The number of bins.

  • alpha: float in (0, 1), optional (default=0.1)
    The regularizer for preventing overflow.

  • tol: float in (0, 1), optional (default=0.5)
    The parameter to decide the flexibility while dealing the samples falling outside the bins.

  • contamination: float in (0., 0.5), optional (default=0.1)
    The amount of contamination of the data set, i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold on the decision function. Automatically determined by algorithm script!!

Citation format (for source code)

Zhao, Y., Nasrullah, Z. and Li, Z., 2019. PyOD: A Python Toolbox for Scalable Outlier Detection. Journal of machine learning research (JMLR), 20(96), pp.1-7.