forked from koka-lang/koka
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbtree.kk
109 lines (82 loc) · 3.27 KB
/
rbtree.kk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/* Example of red-black tree balanced insertion.
This is based on the rebalancing algorithm shown in
Chris Okasaki's beautiful book, "Purely Functional Data Structures",
(Cambridge University Press, 1998, <https://www.amazon.com/Purely-Functional-Data-Structures-Okasaki/dp/0521663504>).
See also the benchmarks in `example/bench/koka` and `rbtree-fbip.kk`
*/
module rbtree
import std/os/env
// A tree node color is either `Red` or `Black`
type color
Red
Black
// An ordered tree with `:int` keys and values `:a` in each node.
type tree<a>
Node(color : color, left : tree<a>, key : int, value : a, right : tree<a>)
Leaf
fun tree/is-red(t : tree<a>) : bool
match t
Node(Red) -> True
_ -> False
// balance with a new the left-side for a node `k`, `v`, `r`
fun balance-left(l :tree<a>, k : int, v : a, r : tree<a>) : tree<a>
match l
Node(_, Node(Red, lx, kx, vx, rx), ky, vy, ry)
-> Node(Red, Node(Black, lx, kx, vx, rx), ky, vy, Node(Black, ry, k, v, r))
Node(_, ly, ky, vy, Node(Red, lx, kx, vx, rx))
-> Node(Red, Node(Black, ly, ky, vy, lx), kx, vx, Node(Black, rx, k, v, r))
Node(_, lx, kx, vx, rx)
-> Node(Black, Node(Red, lx, kx, vx, rx), k, v, r)
Leaf -> Leaf
// balance with a new right-side for a node `l`, `k`, `v`
fun balance-right(l : tree<a>, k : int, v : a, r : tree<a>) : tree<a>
match r
Node(_, Node(Red, lx, kx, vx, rx), ky, vy, ry)
-> Node(Red, Node(Black, l, k, v, lx), kx, vx, Node(Black, rx, ky, vy, ry))
Node(_, lx, kx, vx, Node(Red, ly, ky, vy, ry))
-> Node(Red, Node(Black, l, k, v, lx), kx, vx, Node(Black, ly, ky, vy, ry))
Node(_, lx, kx, vx, rx)
-> Node(Black, l, k, v, Node(Red, lx, kx, vx, rx))
Leaf -> Leaf
// insert a new value `v` with key `k` into a tree `t`, rebalancing on the way up
fun ins(t : tree<a>, k : int, v : a) : tree<a>
match t
Node(Red, l, kx, vx, r)
-> if k < kx then Node(Red, ins(l, k, v), kx, vx, r)
elif k == kx then Node(Red, l, k, v, r)
else Node(Red, l, kx, vx, ins(r, k, v))
Node(Black, l, kx, vx, r)
-> if k < kx then (if is-red(l) then balance-left(ins(l,k,v), kx, vx, r)
else Node(Black, ins(l, k, v), kx, vx, r))
elif k == kx then Node(Black, l, k, v, r)
elif is-red(r) then balance-right(l, kx, vx, ins(r,k,v))
else Node(Black, l, kx, vx, ins(r, k, v))
Leaf -> Node(Red, Leaf, k, v, Leaf)
fun set-black(t : tree<a>) : tree<a>
match t
Node(_, l, k, v, r) -> Node(Black, l, k, v, r)
_ -> t
// Balanced tree insertion
fun insert(t : tree<a>, k : int, v : a) : tree<a>
if t.is-red
then ins(t, k, v).set-black
else ins(t, k, v)
// Fold the elements of a tree
fun fold(t : tree<a>, acc : b, f : (int, a, b) -> b) : b
match t
Node(_, l, k, v, r) -> fold( r, f(k,v,fold(l,acc,f)), f )
Leaf -> acc
// Make a boolean tree
fun make-tree(n : int) : tree<bool>
fold( 0, n - 1, Leaf) fn(i,t)
t.insert( i, i%10 == 0 )
// Count the nodes with `True` values.
fun count( t : tree<bool> ) : int
t.fold(0) fn(k,v,r)
if v then r + 1 else r
// Benchmark for `n` insertions
pub fun bench(n : int)
make-tree(n).count.println
pub fun main()
val n = get-args().head("").parse-int.default(4200000)
bench(n)