forked from nabulago/anomaly-event-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
imagestacker.py
51 lines (42 loc) · 1.51 KB
/
imagestacker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#sampleScript
import cv2
import numpy as np
import os, os.path
def nameSplitter(text):
'''
It will return the original image file name striped with the prefixes
Image name is the frame no in the folder.
'''
splitText = text.split("_")[-1]
return splitText
def extractFileName(text):
#print text
imagePathSplit = text.split('/')
tmp = text.split('/')[0]
imageFileName = text.split('/')[2].split('.')[0]
#return imageFileName
return imagePathSplit
#return [imageNo,tmp,imageFileName]
# Dataset path where training images in format of the pickle file or other sliced image contains
datasetPath = "/data/train/"
# List of folders which you want to use as for now to test the codes is working 2 folders are taken
listOfFolders = ['Train001','Train002']
# List of slice sizes which are 15, 18 and 20 respectively
listOfWindows = ['15','rs18','rs20']
# Sample name for the sliced images
imageList15 = ['0_15_001.jpeg','1_15_001.jpeg']
imageListrs18 = ['90_rs18_15_001.jpeg','91_rs18_15_001.jpeg']
imageListrs18 = ['120_rs20_15_001.jpeg','121_rs20_15_001.jpeg']
# /train/folder/windowsize/imageno_windowsize_image.jpeg
# /test/folder/windowsize/imageno_windowsize_image.jpeg
imageN = 'Train001/15/0_15_001.jpeg'
imageD = 'folder/windowsize/imageno_windowsize_image.jpeg'
listOfImagesAll = []
for lf in listOfFolders:
for ws in listOfWindows:
print lf+"/"+ws
#imn, tst, tb = extractFileName(imageD)
#print (imn, tst, tb)
print ("------------")
print (extractFileName(imageN)[2])
print (nameSplitter(extractFileName(imageN)[2]))