forked from nabulago/anomaly-event-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
174 lines (153 loc) · 6.11 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
""" Auto Encoder Example.
Build a 2 layers auto-encoder with TensorFlow to compress images to a
lower latent space and then reconstruct them.
References:
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
learning applied to document recognition." Proceedings of the IEEE,
86(11):2278-2324, November 1998.
Links:
[MNIST Dataset] http://yann.lecun.com/exdb/mnist/
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""
from __future__ import division, print_function, absolute_import
from sklearn.cross_validation import train_test_split
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pickle
import os,os.path
# Import MNIST data
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
pathToDataset ="/home/eleganzit/Desktop/maruti/"
dataSetList = ['motionfeatures.p']
ptdt = '/home/eleganzit/Desktop/maruti/'
print(ptdt)
print(dataSetList)
print( pathToDataset+dataSetList[0])
if os.path.isfile(str(pathToDataset)+str(dataSetList[0])):
print (str(pathToDataset)+str(dataSetList[0]))
mydataset = open(str(pathToDataset)+str(dataSetList[0]),'rb')
lds= pickle.load(mydataset)
print (lds)
print (lds.shape)
# train, test = train_test_split()
print (np.round(len(lds[1])*0.3).astype('uint8'))
print (np.round(len(lds[1])*0.8).astype('uint8')-np.round(len(lds[1])*0.5).astype('uint8'))
train = lds[:,0:35]
test = lds[:,35:50]
print(train.shape)
print(test.shape)
print(test)
# Training Parameters
learning_rate = 0.01
num_steps = 3000
#batch_size = 256
batch_size = 1
display_step = 1000
examples_to_show = 10
# # Network Parameters
num_hidden_1 = 256 # 1st layer num features
num_hidden_2 = 128 # 2nd layer num features (the latent dim)
#num_hidden_1 = 1024 # 1st layer num features
#num_hidden_2 = 512 # 2nd layer num features (the latent dim)
#num_hidden_3 = 256
#num_hidden_4 = 128
num_input = 225 # MNIST data input (img shape: 15*15)
# tf Graph input (only pictures)
X = tf.placeholder("float", [None, num_input])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([num_input, num_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_hidden_2])),
# 'encoder_h3': tf.Variable(tf.random_normal([num_hideen_2, num_hidden_3])),
# 'encoder_h4': tf.Variable(tf.random_normal([num_hidden_3, num_hidden_4])),
# 'decoder_h4': tf.Variable(tf.random_normal([num_hidden_4, num_hidden_3])),
# 'decoder_h3': tf.Variable(tf.random_normal([num_hidden_3, num_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([num_hidden_2, num_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([num_hidden_1, num_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([num_hidden_2])),
# 'encoder_b3': tf.Variable(tf.random_normal([num_hidden_3])),
# 'encoder_b4': tf.Variable(tf.random_normal([num_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([num_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([num_input])),
}
# Building the encoder
def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# Encoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2
# Building the decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# Decoder Hidden layer with sigmoid activation #2
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2
# Construct model
encoder_op = encoder(X)
decoder_op = decoder(encoder_op)
# Prediction
y_pred = decoder_op
print(y_pred)
# Targets (Labels) are the input data.
y_true = X
# Define loss and optimizer, minimize the squared error
loss = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(loss)
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
# Start Training
# Start a new TF session
with tf.Session() as sess:
# Run the initializer
sess.run(init)
# Training
for i in range(1, num_steps+1):
# Prepare Data
# Get the next batch of MNIST data (only images are needed, not labels)
#batch_x, _ = mnist.train.next_batch (batch_size)
batch_x = train.T
# Run optimization op (backprop) and cost op (to get loss value)
_, l = sess.run([optimizer, loss], feed_dict={X: batch_x})
# Display logs per step
if i % display_step == 0 or i == 1:
print('Step %i: Minibatch Loss: %f' % (i, l))
# Testing
# Encode and decode images from test set and visualize their reconstruction.
n = 4
canvas_orig = np.empty((15 * n, 15 * n))
canvas_recon = np.empty((15 * n, 15 * n))
for i in range(n):
# MNIST test set
#batch_x, _ = mnist.test.next_batch(n)
batch_x = test.T
# Encode and decode the digit image
g = sess.run(decoder_op, feed_dict={X: batch_x})
# Display original images
for j in range(n):
# Draw the original digits
canvas_orig[i * 15:(i + 1) * 15, j * 15:(j + 1) * 15] = \
batch_x[j].reshape([15, 15])
# Display reconstructed images
for j in range(n):
# Draw the reconstructed digits
canvas_recon[i * 15:(i + 1) * 15, j * 15:(j + 1) * 15] = \
g[j].reshape([15, 15])
print("Original Images")
plt.figure(figsize=(n, n))
plt.imshow(canvas_orig, origin="upper", cmap="gray")
plt.show()
print("Reconstructed Images")
plt.figure(figsize=(n, n))
plt.imshow(canvas_recon, origin="upper", cmap="gray")
plt.show()