forked from Arbitersc/AnomalyDetectionCVPR2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Save_C3DFeatures_32Segments.m
131 lines (83 loc) · 3.17 KB
/
Save_C3DFeatures_32Segments.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
clc
clear all
close all
% This code save already computed C3D features into 32 (video features) segments.
% We assume that C3D features for a video are already computed. We use
% default settings for computing C3D features, i.e., we compute C3D features for
% every 16 frames and obtain the features from fc6.
C3D_Path='/newdata/UCF_Anomaly_Dataset/Dataset_iA/PRIA_Data/Dataset/C3D_Features';
C3D_Path_Seg='/newdata/UCF_Anomaly_Dataset/Dataset_iA/PRIA_Data/Dataset/C3D_Features_txt/Avg';
if ~exist(C3D_Path_Seg,'dir')
mkdir(C3D_Path_Seg)
end
All_Folder=dir(C3D_Path);
All_Folder=All_Folder(3:end);
subcript='_C.txt';
for ifolder=1:length(All_Folder)
Folder_Path=[C3D_Path,'/',All_Folder(ifolder).name];
%Folder_Path is path of a folder which contains C3D features (for every 16 frames) for a paricular video.
AllFiles=dir([Folder_Path,'/*.fc6-1']);
Feature_vect=zeros(length(AllFiles),4096);
for ifile=1:length(AllFiles)
FilePath=[Folder_Path,'/', AllFiles(ifile).name];
[s, data] = read_binary_blob(FilePath);
Feature_vect(ifile,:)=data;
clear data
end
if sum( Feature_vect(:))==0
error('??')
end
% Write C3D features in text file to load in
% Training_AnomalyDetector_public ( You can directly use .mat format if you want).
fid1=fopen([C3D_Path_Seg,'/',All_Folder(ifolder).name,subcript],'w');
if ~isempty(find(sum(Feature_vect,2)==0))
error('??')
end
if ~isempty(find(isnan(Feature_vect(:))))
error('??')
end
if ~isempty(find(Feature_vect(:)==Inf))
error('??')
end
%% 32 Segments
Segments_Features=zeros(32,4096);
thirty2_shots= round(linspace(1,length(AllFiles),33));
count=0;
for ishots=1:length(thirty2_shots)-1
ss=thirty2_shots(ishots);
ee=thirty2_shots(ishots+1)-1;
if ishots==length(thirty2_shots)
ee=thirty2_shots(ishots+1);
end
if ss==ee
temp_vect=Feature_vect(ss:ee,:);
elseif ee<ss
temp_vect=Feature_vect(ss,:);
else
temp_vect=mean(Feature_vect(ss:ee,:));
end
temp_vect=temp_vect/norm(temp_vect);
if norm(temp_vect)==0
error('??')
end
count=count+1;
Segments_Features(count,:)=temp_vect;
end
%verify
if ~isempty(find(sum(Segments_Features,2)==0))
error('??')
end
if ~isempty(find(isnan(Segments_Features(:))))
error('??')
end
if ~isempty(find(Segments_Features(:)==Inf))
error('??')
end
% save 32 segment features in text file ( You can directly save and load .mat file in python as well).
for ii=1:size(Segments_Features,1)
feat_text=Segments_Features(ii,:);%(Feature_vect(ii,:));
fprintf (fid1,'%f ',feat_text);
fprintf (fid1,'\n');
end
fclose(fid1);
end