forked from THU-VCLab/HGGD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_utils.py
495 lines (446 loc) · 18.1 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import argparse
import datetime
import json
import logging
import os
import random
import sys
import numpy as np
import tensorboardX
import torch
import torch.multiprocessing as mp
import torch.optim as optim
from torchsummary import summary
from customgraspnetAPI import Grasp, GraspGroup
eval_scale = np.linspace(0.2, 1, 5)
def log_acc_str(name, T, F):
T, F = int(T), int(F)
if T + F == 0:
return f'{name} 0/0 = 0'
return f'{name} {T}/{T + F} = {T / (T + F):.3f}'
def parse_args():
parser = argparse.ArgumentParser(description='Train network')
# Network
# 2d
parser.add_argument('--resume', type=str, default=None, help='Model path')
parser.add_argument('--input-h',
type=int,
default=360,
help='Input image size for the network')
parser.add_argument('--input-w',
type=int,
default=640,
help='Input image size for the network')
parser.add_argument('--use-depth',
type=int,
default=1,
help='Use Depth image for training (1/0)')
parser.add_argument('--use-rgb',
type=int,
default=1,
help='Use RGB image for training (1/0)')
parser.add_argument('--iou-threshold',
type=float,
default=0.25,
help='Threshold for IOU matching')
# pc
parser.add_argument(
'--center-num',
type=int,
default=128,
help='choose how many centers from 2d predicted heatmap')
parser.add_argument('--group-num',
type=int,
default=512,
help='point num around one center of ball query')
parser.add_argument('--anchor-num',
type=int,
default=7,
help='anchor num for gamma and beta')
parser.add_argument('--local-grasp-num',
type=int,
default=500,
help='number of local grasps in local pointcloud')
# Dataset
parser.add_argument('--scene-l',
type=int,
default=0,
help='Scene id left range')
parser.add_argument('--scene-r',
type=int,
default=100,
help='Scene id right range')
parser.add_argument('--dataset-path',
type=str,
default=None,
help='Path to grasp dataset')
parser.add_argument('--scene-path',
type=str,
default=None,
help='Path to scene dataset')
parser.add_argument('--checkpoint',
type=str,
default=None,
help='Checkpoint path to load')
parser.add_argument('--num-workers',
type=int,
default=4,
help='Dataset workers')
# Anchor
parser.add_argument('--ratio',
type=int,
default=8,
help='Down sample ratio')
parser.add_argument('--grid-size',
type=int,
default=8,
help='2D center select grid size')
parser.add_argument(
'--anchor-k',
type=int,
default=6,
help='The number of oriented anchor boxes with different angles')
parser.add_argument('--anchor-w',
type=float,
default=50.0,
help='The default width of the anchor boxes')
parser.add_argument('--anchor-z',
type=float,
default=20.0,
help='The default z of the anchor boxes')
parser.add_argument('--grasp-count',
type=int,
default=5000,
help='The default grasp count of one image')
parser.add_argument('--sigma',
type=int,
default=10,
help='Gaussian kernel sigma')
parser.add_argument('--loc-a',
type=float,
default=1,
help='loss coef for loc map')
parser.add_argument('--reg-b',
type=float,
default=1,
help='loss coef for regress')
parser.add_argument('--cls-c',
type=float,
default=1,
help='loss coef for classify')
parser.add_argument('--offset-d',
type=float,
default=5,
help='loss coef for grasp 3d offset')
# Training
parser.add_argument('--all-points-num',
type=int,
default=25600,
help='downsample scene points')
parser.add_argument('--batch-size', type=int, default=8, help='Batch size')
parser.add_argument('--shift-epoch',
type=int,
default=5,
help='Epoch num for anchor shifting')
parser.add_argument(
'--pre-epochs',
type=int,
default=-1,
help='Pre training 2d epochs, will be 0 if joint-trainning')
parser.add_argument('--joint-trainning',
action='store_true',
help='Whether to train 2d and 6d net together')
parser.add_argument('--epochs',
type=int,
default=15,
help='Training epochs')
parser.add_argument('--lr', type=float, default=3e-3, help='Learning rate')
parser.add_argument('--optim',
type=str,
choices=['adam', 'adamw', 'sgd'],
help='Optmizer for the training. (adam, adamw or SGD)')
parser.add_argument(
'--step-cnt',
type=int,
default=1,
help='Network batch step cnt (batch_size * step_cnt == real_batch_size)'
)
parser.add_argument('--noise', type=float, default=0.0, help='Depth noise')
# grasp detection
parser.add_argument('--heatmap-thres',
type=float,
default=0.01,
help='2D grasp generation heatmap_thres')
parser.add_argument('--local-k',
type=int,
default=3,
help='Local anchor top-k selection')
parser.add_argument('--local-thres',
type=float,
default=0.01,
help='6D grasp generation local multi_cls score thres')
parser.add_argument('--rotation-num',
type=int,
default=1,
help='Local rotation num for 2D grasp')
parser.add_argument('--top-num',
type=float,
default=1.0,
help='Grasp Detect Ratio Number')
# Logging etc.
parser.add_argument('--description',
type=str,
default='',
help='Training description')
parser.add_argument('--save-freq',
type=int,
default=1,
help='Model save frequency')
parser.add_argument('--logdir',
type=str,
default='./logs/',
help='Log directory')
parser.add_argument('--random-seed',
type=int,
default=123,
help='Random seed')
args = parser.parse_args()
if args.joint_trainning:
args.pre_epochs = 0
print('Joint Trainning for the whole network')
return args
def prepare_torch_and_logger(args, mode='train'):
# multiprocess
# mp.set_start_method('spawn')
# set torch and gpu setting
np.set_printoptions(precision=4, suppress=True)
torch.set_printoptions(precision=4, sci_mode=False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
else:
raise RuntimeError('CUDA not available')
# random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# Set-up output directories
net_desc = datetime.datetime.now().strftime('%y%m%d_%H%M%S')
net_desc = net_desc + '_' + args.description
if mode == 'test':
net_desc = 'test' + net_desc
save_folder = os.path.join(args.logdir, net_desc)
if not os.path.exists(save_folder):
os.makedirs(save_folder)
tb = tensorboardX.SummaryWriter(save_folder)
# Save commandline args
if args is not None:
params_path = os.path.join(save_folder, 'commandline_args.json')
with open(params_path, 'w') as f:
json.dump(vars(args), f)
# Initialize logging
logging.root.handlers = []
logging.basicConfig(
level=logging.INFO,
filename='{0}/{1}.log'.format(save_folder, 'log'),
format=
'[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s',
datefmt='%H:%M:%S')
# set up logging to console
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
# set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)
return tb, save_folder
def get_optimizer(args, params):
# get optimizer
if args.optim.lower() == 'adam':
optimizer = optim.Adam(params, lr=args.lr, weight_decay=1e-4)
elif args.optim.lower() == 'adamw':
optimizer = optim.AdamW(params, lr=args.lr, weight_decay=1e-2)
elif args.optim.lower() == 'sgd':
optimizer = optim.SGD(params, lr=args.lr, momentum=0.9)
else:
raise NotImplementedError('Optimizer {} is not implemented'.format(
args.optim))
return optimizer
def print_model(args, input_channels, model, save_folder):
summary(model, (input_channels, args.input_w, args.input_h), device='cpu')
with open(os.path.join(save_folder, 'arch.txt'), 'w') as f:
sys.stdout = f
summary(model, (input_channels, args.input_w, args.input_h),
device='cpu')
sys.stdout = sys.__stdout__
def log_match_result(results, dis_criterion, rot_criterion):
for scale_factor in eval_scale:
# get threshold from criterion and factor
thre_dis = dis_criterion * scale_factor
thre_rot = rot_criterion * scale_factor
t_trans, f_trans = results[f'trans_{thre_dis}']
t_rot, f_rot = results[f'rot_{thre_rot}']
t_grasp, f_grasp = results[f'grasp_{scale_factor}']
t_str = log_acc_str(f'trans_{thre_dis:.2f}', t_trans, f_trans)
r_str = log_acc_str(f'rot_{thre_rot:.2f}', t_rot, f_rot)
g_str = log_acc_str(f'grasp_{scale_factor:.2f}', t_grasp, f_grasp)
logging.info(f'{t_str} {r_str} {g_str}')
def log_and_save(args,
tb,
results,
epoch,
anchornet,
localnet,
optimizer,
anchors,
save_folder,
mode='regnet'):
# Log validation results to tensorboard
# loss
tb.add_scalar('val_loss/loss', results['loss'], epoch)
tb.add_scalar('val_loss/anchor_loss', results['anchor_loss'], epoch)
for n, l in results['losses'].items():
tb.add_scalar('val_loss/' + n, l, epoch)
logging.info('Validation Loss:')
logging.info(f'test loss: {results["loss"]:.3f}')
logging.info(f'anchor loss: {results["anchor_loss"]:.3f}')
if 'loc_map_loss' in results['losses']:
logging.info(
f'loc: {results["losses"]["loc_map_loss"]:.3f}, reg: {results["losses"]["reg_loss"]:.3f}, cls: {results["losses"]["cls_loss"]:.3f}'
)
if epoch >= args.pre_epochs:
tb.add_scalar('val_loss/multi_cls_loss', results['multi_cls_loss'],
epoch)
tb.add_scalar('val_loss/offset_loss', results['offset_loss'], epoch)
logging.info(f'multicls_loss: {results["multi_cls_loss"]:.3f}')
logging.info(f'offset_loss: {results["offset_loss"]:.3f}')
# coverage
if epoch >= args.pre_epochs:
cover_cnt = results['cover_cnt']
label_cnt = results['label_cnt']
tb.add_scalar('coverage', cover_cnt / label_cnt, epoch)
logging.info(
f'coverage rate: {cover_cnt} / {label_cnt} = {cover_cnt / label_cnt:.3f}'
)
# 2d iou
if results['total'] > 0:
iou = results['correct'] / results['total']
tb.add_scalar('IOU', iou, epoch)
logging.info(f'2d iou: {iou:.2f}')
# regnet validation
if epoch >= args.pre_epochs:
if mode == 'regnet':
view_num = results['grasp_nocoll_view_num']
vgr = results['vgr']
score = results['score']
if view_num > 0:
tb.add_scalar('collision_free_ratio', vgr / view_num, epoch)
tb.add_scalar('score', score / view_num, epoch)
logging.info('REGNet validation:')
logging.info(f'vgr: {vgr} / {view_num} = {vgr / view_num:.3f}')
logging.info(
f'score: {score:.3f} / {view_num} = {score / view_num:.3f}'
)
else:
logging.info('No collision-free grasp')
elif mode == 'graspnet':
logging.info('please run test_graspnet.py for graspnet result')
# Save best performing network
if epoch % args.save_freq == 0 and optimizer is not None:
if epoch < args.pre_epochs:
torch.save(
{
'anchor': anchornet.module.state_dict(),
'local': localnet.module.state_dict(),
'optimizer': optimizer.state_dict(),
'gamma': anchors['gamma'],
'beta': anchors['beta']
}, os.path.join(save_folder, f'epoch_{epoch}_iou_{iou:.3f}'))
elif mode == 'regnet':
torch.save(
{
'anchor': anchornet.module.state_dict(),
'local': localnet.module.state_dict(),
'optimizer': optimizer.state_dict(),
'gamma': anchors['gamma'],
'beta': anchors['beta']
},
os.path.join(
save_folder,
f'epoch_{epoch}_score_{score / view_num:.3f}_cover_{cover_cnt / label_cnt:.3f}'
))
elif mode == 'graspnet':
torch.save(
{
'anchor': anchornet.module.state_dict(),
'local': localnet.module.state_dict(),
'optimizer': optimizer.state_dict(),
'gamma': anchors['gamma'],
'beta': anchors['beta']
},
os.path.join(
save_folder,
f'epoch_{epoch}_iou_{iou:.3f}_cover_{cover_cnt / label_cnt:.3f}'
))
def log_test_result(args, results, epoch, mode='regnet'):
# Log validation results to tensorboard
# loss
logging.info('Test Loss:')
logging.info(f'test loss: {results["loss"]:.3f}')
logging.info(f'anchor loss: {results["anchor_loss"]:.3f}')
logging.info(
f'loc: {results["losses"]["loc_map_loss"]:.3f}, reg: {results["losses"]["reg_loss"]:.3f}, cls: {results["losses"]["cls_loss"]:.3f}'
)
if epoch >= args.pre_epochs:
logging.info(f'multicls_loss: {results["multi_cls_loss"]:.3f}')
# coverage
if epoch >= args.pre_epochs:
cover_cnt = results['cover_cnt']
label_cnt = results['label_cnt']
logging.info(
f'coverage rate: {cover_cnt} / {label_cnt} = {cover_cnt / label_cnt:.3f}'
)
# 2d iou
iou = results['correct'] / (results['correct'] + results['failed'])
logging.info(f'2d iou: {iou:.2f}')
# regnet validation
if epoch >= args.pre_epochs:
if mode == 'regnet':
view_num = results['grasp_nocoll_view_num']
vgr = results['vgr']
score = results['score']
if view_num > 0:
logging.info('REGNet validation:')
logging.info(f'vgr: {vgr} / {view_num} = {vgr / view_num:.3f}')
logging.info(
f'score: {score:.3f} / {view_num} = {score / view_num:.3f}'
)
else:
logging.info('No collision-free grasp')
elif mode == 'graspnet':
logging.info('please run test_graspnet.py for graspnet result')
def log_anchor_loss(epoch, batch_idx, loss, anchor_loss, anchor_losses,
batch_cnt):
logging.info('Epoch: {}, Batch: {}, total_loss: {:0.4f}'.format(
epoch, batch_idx, loss / batch_cnt))
logging.info('anchor_loss: {:0.4f}'.format(anchor_loss / batch_cnt))
logging.info(
'loc_map_loss: {:0.4f}, reg_loss: {:0.4f}, cls_loss: {:0.4f}'.format(
anchor_losses['loc_map_loss'] / batch_cnt,
anchor_losses['reg_loss'] / batch_cnt,
anchor_losses['cls_loss'] / batch_cnt))
def dump_grasp(epoch, batch_idx, pred_gg, scene_list, dump_dir='./pred'):
gg = GraspGroup()
for g in pred_gg:
g = Grasp(1, g.width, 0.02, 0.02, g.rotation.reshape(9, ),
g.translation, -1)
gg.add(g)
# save grasps
save_dir = os.path.join(dump_dir, f'epoch_{epoch}')
save_dir = os.path.join(save_dir, scene_list[batch_idx])
save_dir = os.path.join(save_dir, 'realsense')
save_path = os.path.join(save_dir, str(batch_idx % 256).zfill(4) + '.npy')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
gg.save_npy(save_path)