forked from THU-VCLab/HGGD
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_graspnet.py
735 lines (643 loc) · 30.6 KB
/
train_graspnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import itertools
import logging
from time import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from tqdm import tqdm
from dataset.evaluation import (anchor_output_process, calculate_6d_match,
calculate_coverage, calculate_iou_match,
collision_detect, detect_2d_grasp,
detect_6d_grasp_multi)
from dataset.grasp import RectGraspGroup
from dataset.graspnet_dataset import GraspnetPointDataset
from dataset.pc_dataset_tools import data_process, feature_fusion, get_center_group_label, get_ori_grasp_label
from dataset.utils import shift_anchors
from dataset.config import set_resolution, get_camera_intrinsic
from models.anchornet import AnchorNetOriginal, BNMomentumScheduler
from models.localgraspnet import LocalNetOriginal
from models.losses import compute_anchor_loss, compute_multicls_loss
from train_utils import *
dis_criterion = 0.05
rot_criterion = 0.25
parser = argparse.ArgumentParser(description='Training script for GraspNet')
# --------------------------
# Training parameters
# --------------------------
parser.add_argument('--batch-size', type=int, default=4) # batch size
parser.add_argument('--step-cnt', type=int, default=2) # number of steps
parser.add_argument('--lr', type=float, default=1e-2) # learning rate
# --------------------------
# Point cloud / 3D parameters
# --------------------------
parser.add_argument('--anchor-num', type=int, default=7) # spatial rotation anchor number
parser.add_argument('--anchor-k', type=int, default=6) # in-plane rotation anchor number
parser.add_argument('--anchor-w', type=float, default=50.0) # grasp width anchor size
parser.add_argument('--anchor-z', type=float, default=20.0) # grasp depth anchor size
parser.add_argument('--all-points-num', type=int, default=25600) # downsampled max number of points in point cloud
parser.add_argument('--group-num', type=int, default=512) # local region pc number
parser.add_argument('--center-num', type=int, default=128) # sampled local center/region number (how many grasps are predicted)
parser.add_argument('--val-scene-l', type=int, default=100)
parser.add_argument('--val-scene-r', type=int, default=101)
parser.add_argument('--scene-l', type=int, default=0)
parser.add_argument('--scene-r', type=int, default=100)
parser.add_argument('--noise', type=int, default=0)
parser.add_argument('--grid-size', type=int, default=8) # grid size for grid-based center sampling
parser.add_argument('--feature-dim', type=int, default=128) # feature dimension for anchor net
parser.add_argument('--heatmap-thres', type=float, default=0.01) # heatmap threshold
parser.add_argument('--local-k', type=int, default=10) # grasp detection number in each local region (localnet)
# --------------------------
# 2D image parameters
# --------------------------
parser.add_argument('--input-h', type=int, default=int(720/2.25)) # target height of input images
parser.add_argument('--input-w', type=int, default=int(1280/2)) # target width of input image
parser.add_argument('--sigma', type=int, default=10)
# --------------------------
# Loss weighting parameters
# --------------------------
parser.add_argument('--loc-a', type=int, default=1) # localization loss weight
parser.add_argument('--reg-b', type=int, default=5) # regression loss weight
parser.add_argument('--cls-c', type=int, default=1) # classification loss weight
parser.add_argument('--offset-d', type=int, default=1) # offset loss weight
# --------------------------
# General training settings
# --------------------------
parser.add_argument('--epochs', type=int, default=10) # number of epochs
parser.add_argument('--ratio', type=int, default=8) # grasp attributes prediction downsample ratio, must be 2^N
parser.add_argument('--num-workers', type=int, default=4) # number of workers for data loading
parser.add_argument('--save-freq', type=int, default=1) # frequency to save checkpoints (in epochs)
parser.add_argument('--optim', type=str, default='adamw') # optimizer type (adamw, adam, sgd, etc.)
# --------------------------
# Dataset / Logging
# --------------------------
parser.add_argument('--grasp-count', type=int, default=5000)
parser.add_argument('--dump-dir', default='./pred/test') # directory to save predictions
parser.add_argument('--dataset-path', type=str, default='./data/6dto2drefine_realsense') # path to the labels
parser.add_argument('--scene-path', type=str, default='./graspnet') # path to the graspnet scenes
parser.add_argument('--description', type=str, default='realsense') # description for logging or checkpointing
# --------------------------
# Extra features / Flags
# --------------------------
parser.add_argument('--joint-trainning', action='store_true', default=True) # enable joint training
parser.add_argument('--logdir', type=str, default='./logs/') # logging directory
parser.add_argument('--random-seed', type=int, default=1)
parser.add_argument('--pre-epochs', type=int, default=0) # number of epochs to train AnchorNet alone (broken; keep at 0)
parser.add_argument('--local-grasp-num', type=int, default=256) # max. number of local grasps per batch for LocalNet
parser.add_argument('--checkpoint-path', default=None) # path to a checkpoint to load
args = parser.parse_args()
gpu = torch.cuda.is_available()
# WARNING: This script is most likely broken; apply modifications from test_graspnet.py
# --------------------------------------------------------------------------- #
def validate(epoch,
anchornet: nn.Module,
localnet: nn.Module,
val_data: torch.utils.data.DataLoader,
anchors: dict,
args
):
fixed_center_num = 48
# network eval mode
anchornet.eval()
localnet.eval()
# stop rot and zoom for validation
val_data.dataset.eval()
results = {
'correct': 0,
'total': 0,
'loss': 0,
'losses': {},
'multi_cls_loss': 0,
'offset_loss': 0,
'offset_loss': 0,
'anchor_loss': 0,
'cover_cnt': 0,
'label_cnt': 0
}
valid_center_num, total_center_num = 0, 0
for scale_factor in eval_scale:
thre_dis = dis_criterion * scale_factor
thre_rot = rot_criterion * scale_factor
results[f'grasp_{scale_factor}'] = np.zeros((2, ))
results[f'trans_{thre_dis}'] = np.zeros((2, ))
results[f'rot_{thre_rot}'] = np.zeros((2, ))
# stop rot and zoom for validation
batch_idx = -1
with torch.no_grad():
for anchor_data, rgb, depth, grasppaths in tqdm(val_data, desc=f'Valid_{epoch}', ncols=80):
batch_idx += 1
# get scene points
if gpu:
rgb, depth = rgb.cuda(), depth.cuda()
points, _, _ = val_data.dataset.helper.to_scene_points(rgb.cuda(), depth.cuda(), include_rgb=False)
# get xyz maps
xyzs = val_data.dataset.helper.to_xyz_maps(depth)
# get labels
gg_ori_labels = get_ori_grasp_label(grasppaths)
all_grasp_labels = []
for grasppath in grasppaths:
all_grasp_labels.append(np.load(grasppath))
# 2d prediction
x, y, _, _, _ = anchor_data
if gpu:
x = x.cuda()
y = [yy.cuda() for yy in y]
target = [nn.functional.interpolate(yy, scale_factor=(0.5, 0.5)) for yy in y]
pred_2d, perpoint_features = anchornet(x)
loc_map, cls_mask, theta_offset, depth_offset, width_offset = anchor_output_process(*pred_2d, sigma=args.sigma)
# detect 2d grasp (x, y, theta)
rect_gg = detect_2d_grasp(loc_map,
cls_mask,
theta_offset,
depth_offset,
width_offset,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_w=args.anchor_w,
anchor_z=args.anchor_z,
mask_thre=args.heatmap_thres,
center_num=fixed_center_num,
grid_size=args.grid_size,
grasp_nms=args.grid_size)
# cal loss
anchor_lossd = compute_anchor_loss(pred_2d, target, loc_a=args.loc_a, reg_b=args.reg_b, cls_c=args.cls_c)
anchor_losses = anchor_lossd['losses']
anchor_loss = anchor_lossd['loss']
# convert back to np.array
# rot should be 0, zoom should be 1
idx = anchor_data[2].numpy().squeeze()
rot = anchor_data[3].numpy().squeeze()
zoom_factor = anchor_data[4].numpy().squeeze()
# 2d bbox validation
grasp_label = val_data.dataset.load_grasp_labels(idx)
gt_rect_gg = RectGraspGroup()
gt_rect_gg.load_from_dict(grasp_label)
gt_bbs = val_data.dataset.get_gtbb(gt_rect_gg, rot, zoom_factor)
# cal 2d iou
s = calculate_iou_match(rect_gg[0:1], gt_bbs, thre=0.25)
if s:
results['correct'] += 1
results['total'] += 1
multi_cls_loss = 0
offset_loss = 0
if epoch >= args.pre_epochs:
# check 2d result
if rect_gg.size == 0:
print('No 2d grasp found')
continue
# feature fusion using knn and max pooling
points_all = feature_fusion(points, perpoint_features, xyzs)
if gpu:
depth = depth.cuda()
pc_group, valid_local_centers, new_rect_ggs = data_process(
points_all,
depth,
[rect_gg],
args.center_num,
args.group_num,
(args.input_w, args.input_h),
is_training=False)
rect_gg = new_rect_ggs[0]
# batch_size == 1 when valid
points_all = points_all.squeeze()
# check pc_group
if pc_group.shape[0] == 0:
print('No partial point clouds')
continue
# get 2d grasp info (not grasp itself) for trainning
grasp_info = np.zeros((0, 3), dtype=np.float32)
g_thetas = rect_gg.thetas[None]
g_ws = rect_gg.widths[None]
g_ds = rect_gg.depths[None]
cur_info = np.vstack([g_thetas, g_ws, g_ds])
grasp_info = np.vstack([grasp_info, cur_info.T])
grasp_info = torch.from_numpy(grasp_info).to(dtype=torch.float32, device='cuda')
# get gamma and beta classification result
# padding for benchmark
zero_pad_num = fixed_center_num - pc_group.shape[0]
pc_group = torch.concat([
pc_group,
torch.zeros(zero_pad_num, pc_group.shape[1], pc_group.shape[2], device='cuda')
])
grasp_info = torch.concat([
grasp_info,
torch.zeros(zero_pad_num, grasp_info.shape[1], device='cuda')
])
pc_group = pc_group.transpose(1, 2)
pred_view, offset = localnet(pc_group, grasp_info)
valid_num = fixed_center_num - zero_pad_num
pc_group = pc_group[:valid_num]
pred_view = pred_view[:valid_num]
offset = offset[:valid_num]
# detect 6d grasp from 2d output and 6d output
pred_grasp, pred_rect_gg = detect_6d_grasp_multi(
rect_gg,
pred_view,
offset,
valid_local_centers,
(args.input_w, args.input_h),
anchors,
k=args.local_k)
pred_grasp = torch.from_numpy(pred_grasp).to(device='cuda', dtype=torch.float32)
# get nearest grasp labels
gg_labels, _ = get_center_group_label(valid_local_centers, all_grasp_labels, args.local_grasp_num)
# get center valid stats
total_center_num += len(gg_labels)
for gg in gg_labels:
valid_center_num += len(gg) > 0
# get loss
multi_cls_loss, offset_loss = compute_multicls_loss(pred_view, offset, gg_labels, grasp_info, anchors, args)
# collision detect
pred_grasp_from_rect = pred_rect_gg.to_6d_grasp_group()
_, valid_mask = collision_detect(points_all, pred_grasp_from_rect, mode='graspnet')
pred_grasp = pred_grasp[valid_mask]
# cal distance to evaluate grasp quality
# multi scale thresold
gg_ori_labels = get_ori_grasp_label(grasppaths)
for scale_factor in eval_scale:
thre_dis = dis_criterion * scale_factor
thre_rot = rot_criterion * scale_factor
r_g, r_d, r_r = calculate_6d_match(pred_grasp, gg_ori_labels, threshold_dis=thre_dis, threshold_rot=thre_rot)
results[f'grasp_{scale_factor}'] += r_g
results[f'trans_{thre_dis}'] += r_d
results[f'rot_{thre_rot}'] += r_r
# cal coverage rate
cover_cnt = calculate_coverage(pred_grasp, gg_ori_labels)
results['cover_cnt'] += cover_cnt
results['label_cnt'] += len(gg_ori_labels)
# tensorboard record
results['loss'] += anchor_loss.item() + multi_cls_loss.item() + offset_loss.item()
results['anchor_loss'] += anchor_loss.item()
if epoch >= args.pre_epochs:
results['multi_cls_loss'] += multi_cls_loss.item()
results['offset_loss'] += offset_loss.item()
for ln, l in anchor_losses.items():
if ln not in results['losses']:
results['losses'][ln] = 0
results['losses'][ln] += l.item()
# center stat
if total_center_num > 0:
logging.info(f'valid center == {valid_center_num / total_center_num:.2f}')
# loss stat
batch_idx += 1
results['loss'] /= batch_idx
results['anchor_loss'] /= batch_idx
results['multi_cls_loss'] /= batch_idx
results['offset_loss'] /= batch_idx
for ln, l in anchor_losses.items():
results['losses'][ln] /= batch_idx
return results
def train(epoch,
anchornet: nn.Module,
localnet: nn.Module,
train_data: torch.utils.data.DataLoader,
optimizer: optim.AdamW,
anchors: dict,
args
):
"""train one epoch.
Args:
epoch (int): epoch idx
anchornet (nn.Module): anchornet (GHM)
localnet (nn.Module): localnet (NMG)
train_data (torch.utils.data.DataLoader): trian dataset
optimizer (optim.AdamW): optimizer
anchors (dict): local rotation anchors for gamma and beta
args (args): args
"""
results = {
'loss': 0,
'losses': {},
'multi_cls_loss': 0,
'offset_loss': 0,
'anchor_loss': 0
}
valid_center_num, total_center_num = 0, 0
optimizer.zero_grad()
anchornet.train()
localnet.train()
if args.joint_trainning:
train_data.dataset.unaug()
else:
if epoch >= args.pre_epochs:
logging.info('Attention: freeze anchor net!')
anchornet.eval()
for para in anchornet.parameters():
para.requires_grad_(False)
train_data.dataset.unaug()
else:
# extra aug for 2d net
logging.info('Extra augmentation for 2d network trainning!')
train_data.dataset.setaug()
# rot and zoom for trainning
train_data.dataset.train()
# log loss stat
start = time()
batch_idx = -1
sum_local_loss = 0
sum_offset_loss = 0
sum_anchor_loss = 0
sum_anchor_loss_d = {'loc_map_loss': 0, 'reg_loss': 0, 'cls_loss': 0}
shift_epoch = args.epochs
# for anchor shift
cur_labels = torch.zeros((0, 8), dtype=torch.float32)
data_start = time()
data_time = 0
for anchor_data, rgbs, depths, grasppaths in tqdm(train_data, desc=f'Train_{epoch}', ncols=80):
if len(rgbs) < args.batch_size:
continue
data_time += time() - data_start
batch_idx += 1
# get scene points
if gpu:
rgbs, depths = rgbs.cuda(), depths.cuda()
points, _, _ = train_data.dataset.helper.to_scene_points(rgbs, depths, include_rgb=False)
# get xyz maps
xyzs = train_data.dataset.helper.to_xyz_maps(depths)
# get labels
all_grasp_labels = []
for grasppath in grasppaths:
all_grasp_labels.append(np.load(grasppath))
# train anchornet first
x, y, _, _, _ = anchor_data
if gpu:
x = x.cuda(non_blocking=True)
y = [yy.cuda(non_blocking=True) for yy in y]
target = [nn.functional.interpolate(yy, scale_factor=(0.5, 0.5)) for yy in y]
pred_2d, perpoint_features = anchornet(x)
# cal anchor loss
anchor_lossd = compute_anchor_loss(pred_2d, target, loc_a=args.loc_a, reg_b=args.reg_b, cls_c=args.cls_c)
anchor_losses = anchor_lossd['losses']
anchor_loss = anchor_lossd['loss']
# get loss stat
if args.joint_trainning or epoch < args.pre_epochs:
loss = anchor_loss
else:
loss = 0
if epoch >= args.pre_epochs:
# detect 2d grasp center
loc_maps, theta_cls, theta_offset, depth_offset, width_offset = anchor_output_process(*pred_2d, sigma=args.sigma)
# detect 2d grasp (x, y, theta)
rect_ggs = []
for i in range(args.batch_size):
rect_gg = detect_2d_grasp(loc_maps[i],
theta_cls[i],
theta_offset[i],
depth_offset[i],
width_offset[i],
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_w=args.anchor_w,
anchor_z=args.anchor_z,
mask_thre=0,
center_num=args.center_num,
grid_size=args.grid_size,
grasp_nms=args.grid_size)
rect_ggs.append(rect_gg)
if len(rect_ggs) == 0:
print('No 2d grasp found')
continue
# using 2d grasp to crop point cloud
points_all = feature_fusion(points, perpoint_features, xyzs)
# crop local pcs
if gpu:
depths = depths.cuda()
pc_group, valid_local_centers, new_rect_ggs = data_process(
points_all,
depths,
rect_ggs,
args.center_num,
args.group_num,
(args.input_w, args.input_h),
is_training=False
)
rect_ggs = new_rect_ggs
# get 2d grasp info (not grasp itself) for training
grasp_info = np.zeros((0, 3), dtype=np.float32)
for i in range(args.batch_size):
g_thetas = rect_ggs[i].thetas[None]
g_ws = rect_ggs[i].widths[None]
g_ds = rect_ggs[i].depths[None]
cur_info = np.vstack([g_thetas, g_ws, g_ds])
grasp_info = np.vstack([grasp_info, cur_info.T])
grasp_info = torch.from_numpy(grasp_info).to(dtype=torch.float32, device='cuda' if gpu else 'cpu')
# check pc_group
if pc_group.shape[0] == 0:
print('No partial point clouds')
continue
# local net
pc_group = pc_group.transpose(1, 2)
pred_view, offset = localnet(pc_group, grasp_info)
# get nearest grasp labels
gg_labels, total_labels = get_center_group_label(valid_local_centers, all_grasp_labels, args.local_grasp_num)
# get center valid stats
total_center_num += len(gg_labels)
for gg in gg_labels:
valid_center_num += len(gg) > 0
# shift anchors only for first serveral epochs
if epoch < shift_epoch:
cur_labels = torch.cat([cur_labels, total_labels.cpu()], 0)
if len(cur_labels) > 1e6:
shift_start = time()
old_gammas = anchors['gamma'].clone()
old_betas = anchors['beta'].clone()
anchors = shift_anchors(cur_labels, anchors)
# get shift error
error = (old_gammas - anchors['gamma']).abs().sum()
error += (old_betas - anchors['beta']).abs().sum()
logging.info(f'shift error == {error:.5f}')
logging.info(f'shift time == {time() - shift_start:.3f}')
cur_labels = torch.zeros((0, 8), dtype=torch.float32)
# stop when stable
if error < 1e-2:
shift_epoch = 0
# get loss
multi_cls_loss, offset_loss = compute_multicls_loss(pred_view, offset, gg_labels, grasp_info, anchors, args)
loss += multi_cls_loss + offset_loss
# backward every step
loss.backward()
# step sum loss
if batch_idx > 0 and batch_idx % args.step_cnt == 0:
anchornet_params = [p for p in anchornet.parameters() if p.grad is not None]
localnet_params = [p for p in localnet.parameters() if p.grad is not None]
if anchornet_params:
nn.utils.clip_grad.clip_grad_value_(anchornet_params, 1)
#print("Succesfully clipped anchornet's gradients")
if localnet_params:
nn.utils.clip_grad.clip_grad_value_(localnet_params, 1)
#print("Succesfully clipped localnet's gradients")
optimizer.step()
optimizer.zero_grad()
# get accumulation loss (for log_batch_cnt)
sum_anchor_loss += anchor_loss
if epoch >= args.pre_epochs:
sum_local_loss += multi_cls_loss
sum_offset_loss += offset_loss
for key in anchor_losses:
sum_anchor_loss_d[key] += anchor_losses[key]
log_batch_cnt = 800 // args.batch_size
if batch_idx > 0 and batch_idx % log_batch_cnt == 0:
print('\n')
logging.info(f'{log_batch_cnt} batches using time: {time() - start:.2f} s data time: {data_time:.2f} s')
for para in optimizer.param_groups:
cur_lr = para['lr']
break
logging.info(f'current lr: {cur_lr:.7f}')
data_time = 0
start = time()
# print loss stat
log_anchor_loss(epoch, batch_idx,
sum_anchor_loss + sum_local_loss + sum_offset_loss,
sum_anchor_loss, sum_anchor_loss_d, log_batch_cnt)
if epoch >= args.pre_epochs:
logging.info(f'multi_cls_loss: {sum_local_loss / log_batch_cnt:.4f}')
logging.info(f'offset_loss: {sum_offset_loss / log_batch_cnt:.4f}')
logging.info(f'valid center == {valid_center_num / total_center_num:.2f}')
# reset loss stat
valid_center_num, total_center_num = 0, 0
sum_local_loss = 0
sum_offset_loss = 0
sum_anchor_loss = 0
sum_anchor_loss_d = {
'loc_map_loss': 0,
'reg_loss': 0,
'cls_loss': 0
}
# train result update
results['loss'] += anchor_loss.item()
if epoch >= args.pre_epochs:
results['loss'] += multi_cls_loss.item() + offset_loss.item()
results['anchor_loss'] += anchor_loss.item()
for key, value in anchor_losses.items():
if key not in results['losses']:
results['losses'][key] = 0
results['losses'][key] += value.item()
if epoch >= args.pre_epochs:
results['multi_cls_loss'] += multi_cls_loss.item()
results['offset_loss'] += offset_loss.item()
data_start = time()
# loss stat
batch_idx += 1
results['loss'] /= batch_idx
results['anchor_loss'] /= batch_idx
for key in results['losses']:
results['losses'][key] /= batch_idx
if epoch >= args.pre_epochs:
results['multi_cls_loss'] /= batch_idx
results['offset_loss'] /= batch_idx
return results
if __name__ == '__main__':
# prepare for trainning
tb, save_folder = prepare_torch_and_logger(args)
# set resolution (!)
set_resolution(args.input_w, args.input_h)
print("camera_intrinsics:", get_camera_intrinsic()[0], get_camera_intrinsic()[1])
# load dataset
logging.info('Loading Dataset...')
sceneIds = list(range(args.scene_l, args.scene_r))
Dataset = GraspnetPointDataset(args.all_points_num,
args.dataset_path,
args.scene_path,
sceneIds,
noise=args.noise,
sigma=args.sigma,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_z=args.anchor_z,
anchor_w=args.anchor_w,
grasp_count=args.grasp_count,
output_size=(args.input_w, args.input_h),
random_rotate=False,
random_zoom=False)
val_list = list(range(args.val_scene_l, args.val_scene_r))
Val_Dataset = GraspnetPointDataset(args.all_points_num,
args.dataset_path,
args.scene_path,
val_list,
noise=args.noise,
sigma=args.sigma,
ratio=args.ratio,
anchor_k=args.anchor_k,
anchor_z=args.anchor_z,
anchor_w=args.anchor_w,
grasp_count=args.grasp_count,
output_size=(args.input_w, args.input_h),
random_rotate=False,
random_zoom=False)
logging.info('Training size: {}'.format(len(Dataset)))
logging.info('Validation size: {}'.format(len(Val_Dataset)))
train_data = torch.utils.data.DataLoader(Dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
pin_memory=True)
val_data = torch.utils.data.DataLoader(Val_Dataset,
batch_size=1,
pin_memory=True)
# load the network
logging.info('Loading Network...')
input_channels = 4
anchornet = AnchorNetOriginal(feature_dim=args.feature_dim, ratio=args.ratio, anchor_k=args.anchor_k, in_dim=4, mode='34')
localnet = LocalNetOriginal(info_size=3, k_cls=args.anchor_num**2, feature_len=3)
# load checkpoint
if gpu:
basic_ranges = torch.linspace(-1, 1, args.anchor_num + 1).cuda()
else:
basic_ranges = torch.linspace(-1, 1, args.anchor_num + 1)
basic_anchors = (basic_ranges[1:] + basic_ranges[:-1]) / 2
anchors = {'gamma': basic_anchors, 'beta': basic_anchors}
if args.checkpoint_path is not None:
ckpt = torch.load(args.checkpoint_path, weights_only=True, map_location=torch.device('cpu'))
if 'gamma' in ckpt and len(ckpt['gamma']) == args.anchor_num:
anchors['gamma'] = ckpt['gamma']
anchors['beta'] = ckpt['beta']
logging.info('Using saved anchors')
anchornet.load_state_dict(ckpt['anchor'])
localnet.load_state_dict(ckpt['local'])
# set optimizer
params = itertools.chain(anchornet.parameters(), localnet.parameters())
optimizer = get_optimizer(args, params)
scheduler = optim.lr_scheduler.StepLR(optimizer, 5, 0.1)
# decay batchnorm momentum from 0.5 to 0.999
# note: pytorch's BN momentum (default 0.1) = 1 - tensorflow's BN momentum
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
bn_lbmd = lambda it: max(BN_MOMENTUM_INIT * 0.5**(int(it / 2)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(anchornet, bn_lambda=bn_lbmd, last_epoch=-1)
# get model architecture
# print_model(args, input_channels, anchornet, save_folder)
if gpu:
anchornet = nn.parallel.DataParallel(anchornet).cuda()
localnet = nn.parallel.DataParallel(localnet).cuda()
logging.info('Done')
for epoch in range(args.epochs):
logging.info('Beginning Epoch {:02d}'.format(epoch))
train_results = train(epoch, anchornet, localnet, train_data, optimizer, anchors, args)
scheduler.step()
bnm_scheduler.step()
# log training losses to tensorboard
tb.add_scalar('train_loss/loss', train_results['loss'], epoch)
tb.add_scalar('train_loss/anchor_loss', train_results['anchor_loss'], epoch)
for n, l in train_results['losses'].items():
tb.add_scalar('train_loss/' + n, l, epoch)
if epoch >= args.pre_epochs:
tb.add_scalar('train_loss/multi_cls_loss', train_results['multi_cls_loss'], epoch)
tb.add_scalar('train_loss/offset_loss', train_results['offset_loss'], epoch)
# run validation
logging.info('Validating...')
val_results = validate(epoch, anchornet, localnet, val_data, anchors, args)
if epoch >= args.pre_epochs:
log_match_result(val_results, dis_criterion, rot_criterion)
log_and_save(
args,
tb,
val_results,
epoch,
anchornet,
localnet,
optimizer,
anchors,
save_folder,
mode='graspnet'
)