-
Notifications
You must be signed in to change notification settings - Fork 79
/
3XTA.txt
1306 lines (1155 loc) · 62.6 KB
/
3XTA.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
sbc-bench v0.9.6 Radxa ROCK 5A (Mon, 16 May 2022 07:32:12 +0000)
Distributor ID: Debian
Description: Debian GNU/Linux 11 (bullseye)
Release: 11
Codename: bullseye
/usr/bin/gcc (Debian 10.2.1-6) 10.2.1 20210110
Uptime: 07:32:13 up 2 days, 21:36, 1 user, load average: 1.22, 0.62, 0.40
Linux 5.10.66-rockchip-5.10 (radxa) 05/16/22 _aarch64_ (8 CPU)
avg-cpu: %user %nice %system %iowait %steal %idle
0.05 0.00 0.98 0.01 0.00 98.96
Device tps kB_read/s kB_wrtn/s kB_dscd/s kB_read kB_wrtn kB_dscd
mmcblk0 0.61 0.65 8.00 119.23 163669 2004086 29877055
total used free shared buff/cache available
Mem: 3.7Gi 205Mi 3.3Gi 9.0Mi 109Mi 3.4Gi
Swap: 0B 0B 0B
##########################################################################
Checking cpufreq OPP for cpu0-cpu3 (Cortex-A55):
Cpufreq OPP: 1800 Measured: 1790 (1786.899/1783.937/1782.262)
Cpufreq OPP: 1608 Measured: 1610 (1609.681/1605.278/1604.540)
Cpufreq OPP: 1416 Measured: 1420 (1416.350/1414.999/1413.837)
Cpufreq OPP: 1200 Measured: 1225 (1223.636/1220.037/1215.044)
Cpufreq OPP: 1008 Measured: 1000 (997.591/996.484/993.501)
Cpufreq OPP: 816 Measured: 800 (797.207/794.468/787.531)
Cpufreq OPP: 600 Measured: 590 (589.856/589.632/586.370)
Cpufreq OPP: 408 Measured: 395 (394.320/390.544/388.848)
Checking cpufreq OPP for cpu4-cpu5 (Cortex-A76):
Cpufreq OPP: 2400 Measured: 2290 (2287.694/2287.565/2287.383)
Cpufreq OPP: 2208 Measured: 2155 (2154.324/2154.255/2154.255)
Cpufreq OPP: 2016 Measured: 1990 (1989.285/1989.163/1989.089)
Cpufreq OPP: 1800 Measured: 1825 (1821.461/1821.420/1821.379)
Cpufreq OPP: 1608 Measured: 1625 (1624.552/1624.421/1624.388)
Cpufreq OPP: 1416 Measured: 1430 (1427.845/1427.593/1427.466)
Cpufreq OPP: 1200 Measured: 1205 (1203.423/1203.128/1202.890)
Cpufreq OPP: 1008 Measured: 985 (980.221/980.104/980.011)
Cpufreq OPP: 816 Measured: 795 (790.686/790.573/790.440)
Cpufreq OPP: 600 Measured: 595 (592.884/592.705/592.658)
Cpufreq OPP: 408 Measured: 395 (394.872/394.840/394.674)
Checking cpufreq OPP for cpu6-cpu7 (Cortex-A76):
Cpufreq OPP: 2400 Measured: 2295 (2291.514/2291.123/2291.123)
Cpufreq OPP: 2208 Measured: 2135 (2134.315/2134.067/2133.931)
Cpufreq OPP: 2016 Measured: 1970 (1965.976/1965.905/1965.857)
Cpufreq OPP: 1800 Measured: 1795 (1794.707/1794.648/1794.528)
Cpufreq OPP: 1608 Measured: 1595 (1594.594/1594.436/1594.338)
Cpufreq OPP: 1416 Measured: 1400 (1399.419/1399.313/1399.298)
Cpufreq OPP: 1200 Measured: 1210 (1209.071/1209.014/1208.915)
Cpufreq OPP: 1008 Measured: 990 (987.412/987.235/987.211)
Cpufreq OPP: 816 Measured: 795 (794.620/794.458/794.372)
Cpufreq OPP: 600 Measured: 595 (592.891/592.831/592.791)
Cpufreq OPP: 408 Measured: 395 (394.955/394.900/394.872)
##########################################################################
Hardware sensors:
npu_thermal-virtual-0
temp1: +62.8 C
center_thermal-virtual-0
temp1: +63.8 C
bigcore1_thermal-virtual-0
temp1: +63.8 C
soc_thermal-virtual-0
temp1: +63.8 C (crit = +115.0 C)
gpu_thermal-virtual-0
temp1: +62.8 C
littlecore_thermal-virtual-0
temp1: +63.8 C
bigcore0_thermal-virtual-0
temp1: +63.8 C
##########################################################################
Executing benchmark on cpu0 (Cortex-A55):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 3047.6 MB/s (0.5%)
C copy backwards (32 byte blocks) : 3032.6 MB/s (2.9%)
C copy backwards (64 byte blocks) : 2873.9 MB/s (1.0%)
C copy : 5412.3 MB/s (2.5%)
C copy prefetched (32 bytes step) : 2228.3 MB/s (0.3%)
C copy prefetched (64 bytes step) : 5472.7 MB/s (0.4%)
C 2-pass copy : 2598.0 MB/s (0.4%)
C 2-pass copy prefetched (32 bytes step) : 1809.7 MB/s (0.6%)
C 2-pass copy prefetched (64 bytes step) : 2800.4 MB/s (0.3%)
C fill : 12274.1 MB/s (0.3%)
C fill (shuffle within 16 byte blocks) : 12268.4 MB/s (0.3%)
C fill (shuffle within 32 byte blocks) : 12267.6 MB/s (1.8%)
C fill (shuffle within 64 byte blocks) : 11563.0 MB/s (0.4%)
---
standard memcpy : 5705.7 MB/s (0.5%)
standard memset : 21297.8 MB/s (0.3%)
---
NEON LDP/STP copy : 5025.3 MB/s (0.3%)
NEON LDP/STP copy pldl2strm (32 bytes step) : 1799.2 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 3315.1 MB/s (2.3%)
NEON LDP/STP copy pldl1keep (32 bytes step) : 2418.3 MB/s (0.5%)
NEON LDP/STP copy pldl1keep (64 bytes step) : 4823.6 MB/s (1.6%)
NEON LD1/ST1 copy : 4861.5 MB/s (0.3%)
NEON STP fill : 21217.7 MB/s (0.3%)
NEON STNP fill : 13966.3 MB/s (1.4%)
ARM LDP/STP copy : 4786.7 MB/s (0.2%)
ARM STP fill : 21162.4 MB/s (2.0%)
ARM STNP fill : 13925.3 MB/s (3.0%)
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 330.1 MB/s (0.3%)
NEON LDP/STP 2-pass copy (from framebuffer) : 311.9 MB/s (0.2%)
NEON LD1/ST1 copy (from framebuffer) : 86.8 MB/s (1.4%)
NEON LD1/ST1 2-pass copy (from framebuffer) : 86.4 MB/s (1.4%)
ARM LDP/STP copy (from framebuffer) : 173.0 MB/s (0.3%)
ARM LDP/STP 2-pass copy (from framebuffer) : 167.9 MB/s (0.2%)
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.1 ns / 0.2 ns
32768 : 0.8 ns / 1.4 ns
65536 : 1.6 ns / 3.2 ns
131072 : 3.5 ns / 5.8 ns
262144 : 8.2 ns / 12.1 ns
524288 : 11.8 ns / 15.4 ns
1048576 : 13.8 ns / 16.4 ns
2097152 : 15.6 ns / 17.2 ns
4194304 : 44.9 ns / 66.8 ns
8388608 : 87.2 ns / 121.8 ns
16777216 : 109.8 ns / 141.3 ns
33554432 : 123.2 ns / 151.7 ns
67108864 : 132.0 ns / 161.4 ns
Executing benchmark on cpu4 (Cortex-A76):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 9875.4 MB/s
C copy backwards (32 byte blocks) : 9801.0 MB/s
C copy backwards (64 byte blocks) : 9800.0 MB/s
C copy : 10063.3 MB/s
C copy prefetched (32 bytes step) : 10252.3 MB/s
C copy prefetched (64 bytes step) : 10296.3 MB/s (0.1%)
C 2-pass copy : 4827.1 MB/s
C 2-pass copy prefetched (32 bytes step) : 7186.0 MB/s
C 2-pass copy prefetched (64 bytes step) : 7597.8 MB/s
C fill : 24397.0 MB/s (9.6%)
C fill (shuffle within 16 byte blocks) : 19226.1 MB/s (5.5%)
C fill (shuffle within 32 byte blocks) : 16959.0 MB/s (5.2%)
C fill (shuffle within 64 byte blocks) : 18663.5 MB/s (8.5%)
---
standard memcpy : 7663.5 MB/s (5.5%)
standard memset : 15099.1 MB/s (3.4%)
---
NEON LDP/STP copy : 6999.4 MB/s (5.5%)
NEON LDP/STP copy pldl2strm (32 bytes step) : 6659.4 MB/s (7.0%)
NEON LDP/STP copy pldl2strm (64 bytes step) : 6761.7 MB/s (8.0%)
NEON LDP/STP copy pldl1keep (32 bytes step) : 6355.1 MB/s (6.1%)
NEON LDP/STP copy pldl1keep (64 bytes step) : 6930.8 MB/s (8.9%)
NEON LD1/ST1 copy : 5849.0 MB/s (4.0%)
NEON STP fill : 13526.9 MB/s (6.5%)
NEON STNP fill : 13958.1 MB/s (7.2%)
ARM LDP/STP copy : 6265.9 MB/s (7.2%)
ARM STP fill : 12702.6 MB/s (13.2%)
ARM STNP fill : 14798.5 MB/s (13.7%)
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 1737.1 MB/s (4.3%)
NEON LDP/STP 2-pass copy (from framebuffer) : 1553.0 MB/s
NEON LD1/ST1 copy (from framebuffer) : 1736.2 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 1555.9 MB/s (0.8%)
ARM LDP/STP copy (from framebuffer) : 1705.3 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 1554.6 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 0.0 ns / 0.0 ns
131072 : 1.1 ns / 1.5 ns
262144 : 2.2 ns / 2.9 ns
524288 : 4.1 ns / 5.3 ns
1048576 : 10.1 ns / 13.3 ns
2097152 : 13.8 ns / 16.0 ns
4194304 : 38.4 ns / 56.9 ns
8388608 : 81.2 ns / 112.6 ns
16777216 : 105.5 ns / 133.4 ns
33554432 : 118.3 ns / 141.7 ns
67108864 : 125.7 ns / 146.2 ns
Executing benchmark on cpu6 (Cortex-A76):
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 9871.0 MB/s
C copy backwards (32 byte blocks) : 9441.1 MB/s (7.2%)
C copy backwards (64 byte blocks) : 7405.5 MB/s (5.5%)
C copy : 6986.6 MB/s (6.7%)
C copy prefetched (32 bytes step) : 6665.6 MB/s (6.5%)
C copy prefetched (64 bytes step) : 5791.0 MB/s (5.6%)
C 2-pass copy : 4058.9 MB/s (3.8%)
C 2-pass copy prefetched (32 bytes step) : 5082.2 MB/s (7.0%)
C 2-pass copy prefetched (64 bytes step) : 5192.6 MB/s (4.2%)
C fill : 13812.4 MB/s (12.5%)
C fill (shuffle within 16 byte blocks) : 12793.1 MB/s (10.3%)
C fill (shuffle within 32 byte blocks) : 12262.8 MB/s (11.2%)
C fill (shuffle within 64 byte blocks) : 10568.3 MB/s (7.7%)
---
standard memcpy : 5977.6 MB/s (7.6%)
standard memset : 14790.3 MB/s (7.4%)
---
NEON LDP/STP copy : 5738.5 MB/s (8.0%)
NEON LDP/STP copy pldl2strm (32 bytes step) : 4937.3 MB/s (2.6%)
NEON LDP/STP copy pldl2strm (64 bytes step) : 4628.4 MB/s (0.3%)
NEON LDP/STP copy pldl1keep (32 bytes step) : 4487.5 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 4480.9 MB/s (0.4%)
NEON LD1/ST1 copy : 4511.6 MB/s (2.7%)
NEON STP fill : 11294.3 MB/s (12.0%)
NEON STNP fill : 10833.7 MB/s (11.3%)
ARM LDP/STP copy : 5144.2 MB/s (5.7%)
ARM STP fill : 11239.8 MB/s (15.7%)
ARM STNP fill : 10233.2 MB/s (4.9%)
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 1737.3 MB/s (6.2%)
NEON LDP/STP 2-pass copy (from framebuffer) : 1551.8 MB/s
NEON LD1/ST1 copy (from framebuffer) : 1736.5 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 1554.8 MB/s
ARM LDP/STP copy (from framebuffer) : 1706.3 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 1554.3 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 0.0 ns / 0.0 ns
131072 : 1.1 ns / 1.5 ns
262144 : 2.1 ns / 2.8 ns
524288 : 4.2 ns / 5.4 ns
1048576 : 9.3 ns / 12.5 ns
2097152 : 13.7 ns / 16.1 ns
4194304 : 37.7 ns / 57.1 ns
8388608 : 78.9 ns / 109.9 ns
16777216 : 104.2 ns / 131.9 ns
33554432 : 117.3 ns / 140.7 ns
67108864 : 125.1 ns / 145.6 ns
##########################################################################
Executing ramlat on cpu0 (Cortex-A55), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR
4k: 5.204 7.013 4.215 7.006 2.989 3.627 7.008
8k: 5.220 7.010 4.156 7.001 2.998 3.683 7.012
16k: 5.210 7.005 4.162 7.006 2.990 3.626 7.007
32k: 5.315 7.248 4.220 7.105 3.027 3.688 7.164
64k: 12.51 15.12 11.53 15.10 11.24 14.31 19.92
128k: 15.67 19.16 14.39 19.19 14.20 18.58 31.11
256k: 19.71 32.39 18.65 32.00 18.67 30.34 55.01
512k: 22.03 38.05 20.82 37.90 19.38 34.29 65.80
1024k: 21.72 38.52 20.28 38.63 19.01 34.50 71.40
2048k: 23.82 42.30 22.15 42.60 21.00 38.99 78.92
4096k: 65.47 111.5 73.79 116.4 60.41 111.8 233.0
8192k: 109.8 207.9 107.7 190.2 107.7 196.6 397.3
16384k: 132.0 216.1 128.6 223.2 130.6 237.2 496.5
Executing ramlat on cpu4 (Cortex-A76), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR
4k: 4.742 5.083 4.741 5.105 4.245 4.840 4.256
8k: 4.745 5.082 4.757 5.104 4.244 4.840 4.259
16k: 4.744 5.082 4.758 5.105 4.245 4.841 4.259
32k: 4.747 5.082 4.753 5.105 4.246 4.840 4.259
64k: 4.771 5.108 4.775 5.151 4.261 4.673 4.361
128k: 7.455 8.958 7.459 8.865 7.284 7.811 8.914
256k: 9.260 9.892 9.302 9.934 8.643 9.629 10.04
512k: 12.93 14.31 12.79 14.32 11.96 14.08 14.82
1024k: 20.59 22.06 20.71 21.87 20.00 21.94 24.24
2048k: 24.50 27.27 24.51 27.26 23.87 27.06 29.72
4096k: 58.07 65.92 57.86 63.44 57.93 66.06 57.98
8192k: 107.2 105.9 106.1 105.2 106.3 112.2 95.97
16384k: 126.8 123.5 126.3 123.6 127.5 133.2 120.0
Executing ramlat on cpu6 (Cortex-A76), results in ns:
size: 1x32 2x32 1x64 2x64 1xPTR 2xPTR 4xPTR
4k: 4.748 5.084 4.754 5.104 4.244 4.840 4.255
8k: 4.742 5.081 4.757 5.103 4.243 4.838 4.257
16k: 4.755 5.079 4.752 5.102 4.243 4.838 4.257
32k: 4.757 5.078 4.754 5.103 4.242 4.829 4.256
64k: 4.765 5.102 4.766 5.124 4.257 4.634 4.307
128k: 7.432 8.877 7.433 8.530 7.274 7.823 8.895
256k: 9.268 9.884 9.263 9.768 8.623 9.535 9.967
512k: 10.86 11.96 10.92 11.89 10.16 11.62 12.18
1024k: 19.88 22.00 19.93 21.90 19.18 21.52 23.89
2048k: 21.73 23.58 21.59 23.49 20.98 23.32 26.50
4096k: 57.15 65.94 56.81 64.94 55.88 64.91 57.80
8192k: 107.7 106.1 106.0 105.4 105.5 117.8 96.28
16384k: 127.8 124.1 126.3 123.4 127.1 132.9 118.2
##########################################################################
Executing benchmark on each cluster individually
OpenSSL 1.1.1n, built on 15 Mar 2022
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes 16384 bytes
aes-128-cbc 161341.40k 473277.48k 919989.76k 1210122.24k 1331533.14k 1320828.93k
aes-128-cbc 630418.03k 1292907.88k 1649800.36k 1759838.21k 1803728.21k 1809864.02k
aes-128-cbc 632099.01k 1290229.61k 1650414.76k 1761060.86k 1804815.02k 1810890.75k
aes-192-cbc 152499.20k 418008.15k 722455.38k 898528.26k 969640.62k 975394.13k
aes-192-cbc 591653.81k 1128214.06k 1394152.02k 1452137.81k 1505274.54k 1509119.32k
aes-192-cbc 593095.15k 1129897.24k 1393886.55k 1452646.06k 1505695.06k 1509599.91k
aes-256-cbc 142105.70k 372597.93k 637916.93k 778358.10k 827547.65k 830636.03k
aes-256-cbc 590740.81k 1002275.67k 1208003.07k 1267317.08k 1291892.05k 1294559.91k
aes-256-cbc 591328.10k 1003636.82k 1208530.01k 1267129.69k 1291973.97k 1294729.22k
##########################################################################
Executing benchmark single-threaded on cpu0 (Cortex-A55)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: 64000000 - - - - - - - 2048000000
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 1329 100 1293 1293 | 21357 100 1824 1824
23: 1248 100 1272 1272 | 20275 100 1755 1755
24: 1219 100 1311 1311 | 20734 100 1820 1820
25: 1165 100 1331 1331 | 20210 100 1799 1799
---------------------------------- | ------------------------------
Avr: 100 1302 1302 | 100 1800 1799
Tot: 100 1551 1551
Executing benchmark single-threaded on cpu4 (Cortex-A76)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2986 100 2906 2905 | 37334 100 3188 3188
23: 2853 100 2908 2908 | 36643 100 3172 3172
24: 2729 100 2935 2934 | 36015 100 3162 3162
25: 2608 100 2978 2978 | 35328 100 3145 3144
---------------------------------- | ------------------------------
Avr: 100 2932 2931 | 100 3167 3166
Tot: 100 3049 3049
Executing benchmark single-threaded on cpu6 (Cortex-A76)
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: - - 64000000 - - - - - -
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 435 MB, # Benchmark threads: 1
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 2986 100 2906 2906 | 37305 100 3185 3185
23: 2846 100 2900 2900 | 36861 100 3191 3191
24: 2726 100 2932 2932 | 36205 100 3179 3178
25: 2606 100 2976 2976 | 35329 100 3145 3145
---------------------------------- | ------------------------------
Avr: 100 2928 2928 | 100 3175 3175
Tot: 100 3052 3052
##########################################################################
Executing benchmark 3 times multi-threaded
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 1765 MB, # Benchmark threads: 8
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 12971 711 1775 12619 | 151102 655 1966 12888
23: 11624 731 1621 11844 | 141898 665 1847 12279
24: 11106 746 1600 11941 | 118434 664 1566 10395
25: 10352 774 1526 11820 | 109089 626 1551 9709
---------------------------------- | ------------------------------
Avr: 741 1631 12056 | 652 1733 11318
Tot: 696 1682 11687
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 1765 MB, # Benchmark threads: 8
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 11525 734 1528 11212 | 112632 623 1543 9607
23: 10724 734 1490 10927 | 114293 654 1513 9891
24: 10709 754 1528 11515 | 108031 606 1566 9482
25: 9797 778 1437 11186 | 111685 671 1481 9940
---------------------------------- | ------------------------------
Avr: 750 1496 11210 | 638 1526 9730
Tot: 694 1511 10470
7-Zip (a) [64] 16.02 : Copyright (c) 1999-2016 Igor Pavlov : 2016-05-21
p7zip Version 16.02 (locale=C,Utf16=off,HugeFiles=on,64 bits,8 CPUs LE)
LE
CPU Freq: - - - - - - - - -
RAM size: 3740 MB, # CPU hardware threads: 8
RAM usage: 1765 MB, # Benchmark threads: 8
Compressing | Decompressing
Dict Speed Usage R/U Rating | Speed Usage R/U Rating
KiB/s % MIPS MIPS | KiB/s % MIPS MIPS
22: 10424 762 1331 10141 | 119841 650 1574 10222
23: 9817 752 1330 10003 | 111413 659 1462 9641
24: 9342 737 1363 10046 | 108207 621 1530 9497
25: 7958 771 1179 9086 | 102269 602 1511 9102
---------------------------------- | ------------------------------
Avr: 756 1301 9819 | 633 1519 9616
Tot: 694 1410 9717
Compression: 12056,11210,9819
Decompression: 11318,9730,9616
Total: 11687,10470,9717
##########################################################################
** cpuminer-multi 1.3.3 by tpruvot@github **
BTC donation address: 1FhDPLPpw18X4srecguG3MxJYe4a1JsZnd (tpruvot)
[2022-05-16 08:00:35] 8 miner threads started, using 'scrypt' algorithm.
[2022-05-16 08:00:36] CPU #5: 2.66 kH/s
[2022-05-16 08:00:36] CPU #4: 2.64 kH/s
[2022-05-16 08:00:36] CPU #6: 2.63 kH/s
[2022-05-16 08:00:36] CPU #7: 2.55 kH/s
[2022-05-16 08:00:36] CPU #1: 0.83 kH/s
[2022-05-16 08:00:36] CPU #2: 0.83 kH/s
[2022-05-16 08:00:36] CPU #3: 0.83 kH/s
[2022-05-16 08:00:36] CPU #0: 0.73 kH/s
[2022-05-16 08:00:39] Total: 13.91 kH/s
[2022-05-16 08:00:40] Total: 14.41 kH/s
[2022-05-16 08:00:45] CPU #0: 0.80 kH/s
[2022-05-16 08:00:45] CPU #3: 0.81 kH/s
[2022-05-16 08:00:45] CPU #2: 0.81 kH/s
[2022-05-16 08:00:45] CPU #1: 0.81 kH/s
[2022-05-16 08:00:45] CPU #6: 2.80 kH/s
[2022-05-16 08:00:45] CPU #4: 2.85 kH/s
[2022-05-16 08:00:45] CPU #5: 2.86 kH/s
[2022-05-16 08:00:45] CPU #7: 2.72 kH/s
[2022-05-16 08:00:45] Total: 14.46 kH/s
[2022-05-16 08:00:51] CPU #7: 2.71 kH/s
[2022-05-16 08:00:51] Total: 14.38 kH/s
[2022-05-16 08:00:54] Total: 14.42 kH/s
[2022-05-16 08:00:55] CPU #0: 0.80 kH/s
[2022-05-16 08:00:55] CPU #1: 0.81 kH/s
[2022-05-16 08:00:55] CPU #2: 0.81 kH/s
[2022-05-16 08:00:55] CPU #3: 0.81 kH/s
[2022-05-16 08:00:55] CPU #6: 2.76 kH/s
[2022-05-16 08:00:55] CPU #4: 2.85 kH/s
[2022-05-16 08:00:55] CPU #5: 2.86 kH/s
[2022-05-16 08:00:55] Total: 14.50 kH/s
[2022-05-16 08:01:00] CPU #7: 2.80 kH/s
[2022-05-16 08:01:00] Total: 14.45 kH/s
[2022-05-16 08:01:05] CPU #0: 0.76 kH/s
[2022-05-16 08:01:05] CPU #1: 0.81 kH/s
[2022-05-16 08:01:05] CPU #2: 0.81 kH/s
[2022-05-16 08:01:05] CPU #3: 0.81 kH/s
[2022-05-16 08:01:05] CPU #6: 2.72 kH/s
[2022-05-16 08:01:05] CPU #4: 2.85 kH/s
[2022-05-16 08:01:05] CPU #5: 2.86 kH/s
[2022-05-16 08:01:05] Total: 14.43 kH/s
[2022-05-16 08:01:10] CPU #7: 2.80 kH/s
[2022-05-16 08:01:10] Total: 14.39 kH/s
[2022-05-16 08:01:15] CPU #0: 0.76 kH/s
[2022-05-16 08:01:15] CPU #2: 0.81 kH/s
[2022-05-16 08:01:15] CPU #1: 0.81 kH/s
[2022-05-16 08:01:15] CPU #3: 0.81 kH/s
[2022-05-16 08:01:15] CPU #6: 2.71 kH/s
[2022-05-16 08:01:15] CPU #4: 2.84 kH/s
[2022-05-16 08:01:15] CPU #5: 2.85 kH/s
[2022-05-16 08:01:15] Total: 14.41 kH/s
[2022-05-16 08:01:20] CPU #7: 2.77 kH/s
[2022-05-16 08:01:20] Total: 14.52 kH/s
[2022-05-16 08:01:25] CPU #0: 0.81 kH/s
[2022-05-16 08:01:25] CPU #2: 0.82 kH/s
[2022-05-16 08:01:25] CPU #1: 0.82 kH/s
[2022-05-16 08:01:25] CPU #3: 0.82 kH/s
[2022-05-16 08:01:25] CPU #6: 2.83 kH/s
[2022-05-16 08:01:25] CPU #4: 2.88 kH/s
[2022-05-16 08:01:25] CPU #5: 2.88 kH/s
[2022-05-16 08:01:26] CPU #7: 2.75 kH/s
[2022-05-16 08:01:26] Total: 14.60 kH/s
[2022-05-16 08:01:30] Total: 14.59 kH/s
[2022-05-16 08:01:35] CPU #7: 2.72 kH/s
[2022-05-16 08:01:35] Total: 14.60 kH/s
[2022-05-16 08:01:35] CPU #0: 0.82 kH/s
[2022-05-16 08:01:35] CPU #2: 0.82 kH/s
[2022-05-16 08:01:35] CPU #3: 0.82 kH/s
[2022-05-16 08:01:35] CPU #1: 0.82 kH/s
[2022-05-16 08:01:35] CPU #6: 2.84 kH/s
[2022-05-16 08:01:35] CPU #4: 2.89 kH/s
[2022-05-16 08:01:35] CPU #5: 2.90 kH/s
[2022-05-16 08:01:39] Total: 14.68 kH/s
[2022-05-16 08:01:40] Total: 14.64 kH/s
[2022-05-16 08:01:45] CPU #6: 2.85 kH/s
[2022-05-16 08:01:45] CPU #4: 2.92 kH/s
[2022-05-16 08:01:45] CPU #5: 2.94 kH/s
[2022-05-16 08:01:46] CPU #7: 2.80 kH/s
[2022-05-16 08:01:46] Total: 14.62 kH/s
[2022-05-16 08:01:46] CPU #0: 0.60 kH/s
[2022-05-16 08:01:46] CPU #2: 0.63 kH/s
[2022-05-16 08:01:46] CPU #3: 0.63 kH/s
[2022-05-16 08:01:46] CPU #1: 0.63 kH/s
[2022-05-16 08:01:50] Total: 14.02 kH/s
[2022-05-16 08:01:55] CPU #7: 2.81 kH/s
[2022-05-16 08:01:55] Total: 14.07 kH/s
[2022-05-16 08:01:55] CPU #6: 2.90 kH/s
[2022-05-16 08:01:55] CPU #4: 2.93 kH/s
[2022-05-16 08:01:55] CPU #5: 2.95 kH/s
[2022-05-16 08:01:55] CPU #2: 0.64 kH/s
[2022-05-16 08:01:55] CPU #1: 0.64 kH/s
[2022-05-16 08:01:55] CPU #3: 0.64 kH/s
[2022-05-16 08:01:55] CPU #0: 0.58 kH/s
[2022-05-16 08:01:59] Total: 14.14 kH/s
[2022-05-16 08:02:00] Total: 14.18 kH/s
[2022-05-16 08:02:05] CPU #0: 0.63 kH/s
[2022-05-16 08:02:05] CPU #6: 2.82 kH/s
[2022-05-16 08:02:05] CPU #4: 2.94 kH/s
[2022-05-16 08:02:05] CPU #5: 2.95 kH/s
[2022-05-16 08:02:05] CPU #2: 0.64 kH/s
[2022-05-16 08:02:05] CPU #3: 0.64 kH/s
[2022-05-16 08:02:05] CPU #1: 0.64 kH/s
[2022-05-16 08:02:06] CPU #7: 2.86 kH/s
[2022-05-16 08:02:06] Total: 14.12 kH/s
[2022-05-16 08:02:10] Total: 14.16 kH/s
[2022-05-16 08:02:15] CPU #7: 2.89 kH/s
[2022-05-16 08:02:15] Total: 14.16 kH/s
[2022-05-16 08:02:15] CPU #0: 0.63 kH/s
[2022-05-16 08:02:15] CPU #6: 2.81 kH/s
[2022-05-16 08:02:15] CPU #4: 2.92 kH/s
[2022-05-16 08:02:15] CPU #5: 2.94 kH/s
[2022-05-16 08:02:15] CPU #2: 0.63 kH/s
[2022-05-16 08:02:15] CPU #3: 0.63 kH/s
[2022-05-16 08:02:15] CPU #1: 0.64 kH/s
[2022-05-16 08:02:20] Total: 14.08 kH/s
[2022-05-16 08:02:25] CPU #7: 2.88 kH/s
[2022-05-16 08:02:25] Total: 14.05 kH/s
[2022-05-16 08:02:25] CPU #0: 0.63 kH/s
[2022-05-16 08:02:25] CPU #6: 2.81 kH/s
[2022-05-16 08:02:25] CPU #4: 2.93 kH/s
[2022-05-16 08:02:25] CPU #5: 2.95 kH/s
[2022-05-16 08:02:25] CPU #2: 0.64 kH/s
[2022-05-16 08:02:25] CPU #3: 0.64 kH/s
[2022-05-16 08:02:25] CPU #1: 0.64 kH/s
[2022-05-16 08:02:30] Total: 14.02 kH/s
[2022-05-16 08:02:35] CPU #7: 2.79 kH/s
[2022-05-16 08:02:35] Total: 14.04 kH/s
[2022-05-16 08:02:35] CPU #6: 2.88 kH/s
[2022-05-16 08:02:35] CPU #5: 2.93 kH/s
[2022-05-16 08:02:35] CPU #4: 2.91 kH/s
[2022-05-16 08:02:35] CPU #2: 0.63 kH/s
[2022-05-16 08:02:35] CPU #3: 0.63 kH/s
[2022-05-16 08:02:35] CPU #1: 0.63 kH/s
[2022-05-16 08:02:36] CPU #0: 0.57 kH/s
[2022-05-16 08:02:40] Total: 13.99 kH/s
[2022-05-16 08:02:44] CPU #0: 0.62 kH/s
[2022-05-16 08:02:45] CPU #7: 2.81 kH/s
[2022-05-16 08:02:45] Total: 14.09 kH/s
[2022-05-16 08:02:45] CPU #6: 2.89 kH/s
[2022-05-16 08:02:45] CPU #4: 2.92 kH/s
[2022-05-16 08:02:45] CPU #5: 2.94 kH/s
[2022-05-16 08:02:45] CPU #2: 0.63 kH/s
[2022-05-16 08:02:45] CPU #1: 0.64 kH/s
[2022-05-16 08:02:45] CPU #3: 0.63 kH/s
[2022-05-16 08:02:50] Total: 14.08 kH/s
[2022-05-16 08:02:50] CPU #0: 0.62 kH/s
[2022-05-16 08:02:55] CPU #7: 2.81 kH/s
[2022-05-16 08:02:55] Total: 14.04 kH/s
[2022-05-16 08:02:55] CPU #6: 2.88 kH/s
[2022-05-16 08:02:55] CPU #4: 2.94 kH/s
[2022-05-16 08:02:55] CPU #5: 2.94 kH/s
[2022-05-16 08:02:55] CPU #2: 0.64 kH/s
[2022-05-16 08:02:55] CPU #1: 0.64 kH/s
[2022-05-16 08:02:55] CPU #3: 0.64 kH/s
[2022-05-16 08:03:00] Total: 14.08 kH/s
[2022-05-16 08:03:00] CPU #0: 0.63 kH/s
[2022-05-16 08:03:05] CPU #7: 2.90 kH/s
[2022-05-16 08:03:05] Total: 14.19 kH/s
[2022-05-16 08:03:05] CPU #6: 2.83 kH/s
[2022-05-16 08:03:05] CPU #4: 2.94 kH/s
[2022-05-16 08:03:05] CPU #5: 2.95 kH/s
[2022-05-16 08:03:05] CPU #2: 0.64 kH/s
[2022-05-16 08:03:05] CPU #1: 0.64 kH/s
[2022-05-16 08:03:05] CPU #3: 0.64 kH/s
[2022-05-16 08:03:10] Total: 14.16 kH/s
[2022-05-16 08:03:10] CPU #0: 0.62 kH/s
[2022-05-16 08:03:15] CPU #7: 2.87 kH/s
[2022-05-16 08:03:15] Total: 14.05 kH/s
[2022-05-16 08:03:15] CPU #6: 2.88 kH/s
[2022-05-16 08:03:15] CPU #5: 2.93 kH/s
[2022-05-16 08:03:15] CPU #4: 2.84 kH/s
[2022-05-16 08:03:15] CPU #2: 0.63 kH/s
[2022-05-16 08:03:15] CPU #1: 0.63 kH/s
[2022-05-16 08:03:15] CPU #3: 0.63 kH/s
[2022-05-16 08:03:16] CPU #0: 0.57 kH/s
[2022-05-16 08:03:20] Total: 13.96 kH/s
[2022-05-16 08:03:21] CPU #1: 0.62 kH/s
[2022-05-16 08:03:21] CPU #3: 0.62 kH/s
[2022-05-16 08:03:24] CPU #0: 0.59 kH/s
[2022-05-16 08:03:25] CPU #7: 2.83 kH/s
[2022-05-16 08:03:25] Total: 13.94 kH/s
[2022-05-16 08:03:25] CPU #6: 2.85 kH/s
[2022-05-16 08:03:25] CPU #5: 2.94 kH/s
[2022-05-16 08:03:25] CPU #4: 2.92 kH/s
[2022-05-16 08:03:25] CPU #2: 0.64 kH/s
[2022-05-16 08:03:30] Total: 14.09 kH/s
[2022-05-16 08:03:30] CPU #0: 0.62 kH/s
[2022-05-16 08:03:31] CPU #3: 0.63 kH/s
[2022-05-16 08:03:31] CPU #1: 0.63 kH/s
[2022-05-16 08:03:35] CPU #7: 2.82 kH/s
[2022-05-16 08:03:35] Total: 14.04 kH/s
[2022-05-16 08:03:35] CPU #6: 2.85 kH/s
[2022-05-16 08:03:35] CPU #4: 2.93 kH/s
[2022-05-16 08:03:35] CPU #5: 2.94 kH/s
[2022-05-16 08:03:35] CPU #2: 0.64 kH/s
[2022-05-16 08:03:40] Total: 14.10 kH/s
[2022-05-16 08:03:40] CPU #0: 0.63 kH/s
[2022-05-16 08:03:40] CPU #3: 0.63 kH/s
[2022-05-16 08:03:40] CPU #1: 0.64 kH/s
[2022-05-16 08:03:45] CPU #7: 2.89 kH/s
[2022-05-16 08:03:45] Total: 14.13 kH/s
[2022-05-16 08:03:45] CPU #6: 2.77 kH/s
[2022-05-16 08:03:45] CPU #5: 2.94 kH/s
[2022-05-16 08:03:45] CPU #4: 2.93 kH/s
[2022-05-16 08:03:45] CPU #2: 0.63 kH/s
[2022-05-16 08:03:50] Total: 14.06 kH/s
[2022-05-16 08:03:50] CPU #0: 0.62 kH/s
[2022-05-16 08:03:50] CPU #3: 0.63 kH/s
[2022-05-16 08:03:50] CPU #1: 0.63 kH/s
[2022-05-16 08:03:55] CPU #7: 2.88 kH/s
[2022-05-16 08:03:55] Total: 14.07 kH/s
[2022-05-16 08:03:55] CPU #6: 2.84 kH/s
[2022-05-16 08:03:55] CPU #5: 2.93 kH/s
[2022-05-16 08:03:55] CPU #4: 2.87 kH/s
[2022-05-16 08:03:55] CPU #2: 0.63 kH/s
[2022-05-16 08:03:56] CPU #0: 0.59 kH/s
[2022-05-16 08:04:00] Total: 13.98 kH/s
[2022-05-16 08:04:01] CPU #3: 0.62 kH/s
[2022-05-16 08:04:01] CPU #1: 0.62 kH/s
[2022-05-16 08:04:05] CPU #7: 2.88 kH/s
[2022-05-16 08:04:05] Total: 13.93 kH/s
[2022-05-16 08:04:05] CPU #0: 0.58 kH/s
[2022-05-16 08:04:05] CPU #6: 2.89 kH/s
[2022-05-16 08:04:05] CPU #5: 2.94 kH/s
[2022-05-16 08:04:05] CPU #4: 2.83 kH/s
[2022-05-16 08:04:05] CPU #2: 0.63 kH/s
[2022-05-16 08:04:10] Total: 14.01 kH/s
[2022-05-16 08:04:10] CPU #3: 0.64 kH/s
[2022-05-16 08:04:10] CPU #1: 0.64 kH/s
[2022-05-16 08:04:15] CPU #7: 2.89 kH/s
[2022-05-16 08:04:15] Total: 14.15 kH/s
[2022-05-16 08:04:15] CPU #6: 2.82 kH/s
[2022-05-16 08:04:15] CPU #5: 2.95 kH/s
[2022-05-16 08:04:15] CPU #4: 2.93 kH/s
[2022-05-16 08:04:15] CPU #2: 0.64 kH/s
[2022-05-16 08:04:15] CPU #0: 0.63 kH/s
[2022-05-16 08:04:20] Total: 14.13 kH/s
[2022-05-16 08:04:20] CPU #3: 0.64 kH/s
[2022-05-16 08:04:20] CPU #1: 0.64 kH/s
[2022-05-16 08:04:25] CPU #7: 2.89 kH/s
[2022-05-16 08:04:25] Total: 14.06 kH/s
[2022-05-16 08:04:25] CPU #6: 2.81 kH/s
[2022-05-16 08:04:25] CPU #5: 2.95 kH/s
[2022-05-16 08:04:25] CPU #4: 2.93 kH/s
[2022-05-16 08:04:25] CPU #2: 0.64 kH/s
[2022-05-16 08:04:25] CPU #0: 0.63 kH/s
[2022-05-16 08:04:30] Total: 14.10 kH/s
[2022-05-16 08:04:30] CPU #3: 0.64 kH/s
[2022-05-16 08:04:30] CPU #1: 0.64 kH/s
[2022-05-16 08:04:35] CPU #7: 2.81 kH/s
[2022-05-16 08:04:35] Total: 14.09 kH/s
[2022-05-16 08:04:35] CPU #6: 2.89 kH/s
[2022-05-16 08:04:35] CPU #5: 2.94 kH/s
[2022-05-16 08:04:35] CPU #4: 2.92 kH/s
[2022-05-16 08:04:35] CPU #2: 0.63 kH/s
[2022-05-16 08:04:36] CPU #0: 0.62 kH/s
[2022-05-16 08:04:40] Total: 14.07 kH/s
[2022-05-16 08:04:40] CPU #3: 0.64 kH/s
[2022-05-16 08:04:40] CPU #1: 0.64 kH/s
[2022-05-16 08:04:45] CPU #7: 2.82 kH/s
[2022-05-16 08:04:45] Total: 14.15 kH/s
[2022-05-16 08:04:45] CPU #6: 2.89 kH/s
[2022-05-16 08:04:45] CPU #5: 2.95 kH/s
[2022-05-16 08:04:45] CPU #4: 2.93 kH/s
[2022-05-16 08:04:45] CPU #2: 0.64 kH/s
[2022-05-16 08:04:46] CPU #0: 0.63 kH/s
[2022-05-16 08:04:50] Total: 14.20 kH/s
[2022-05-16 08:04:50] CPU #3: 0.64 kH/s
[2022-05-16 08:04:50] CPU #1: 0.64 kH/s
[2022-05-16 08:04:55] CPU #7: 2.88 kH/s
[2022-05-16 08:04:55] Total: 14.09 kH/s
[2022-05-16 08:04:55] CPU #0: 0.62 kH/s
[2022-05-16 08:04:55] CPU #6: 2.80 kH/s
[2022-05-16 08:04:55] CPU #4: 2.92 kH/s
[2022-05-16 08:04:55] CPU #5: 2.93 kH/s
[2022-05-16 08:04:55] CPU #2: 0.63 kH/s
[2022-05-16 08:05:00] Total: 13.97 kH/s
[2022-05-16 08:05:00] CPU #3: 0.64 kH/s
[2022-05-16 08:05:00] CPU #1: 0.64 kH/s
[2022-05-16 08:05:05] CPU #0: 0.62 kH/s
[2022-05-16 08:05:05] CPU #7: 2.84 kH/s
[2022-05-16 08:05:05] Total: 14.10 kH/s
[2022-05-16 08:05:05] CPU #6: 2.84 kH/s
[2022-05-16 08:05:05] CPU #4: 2.92 kH/s
[2022-05-16 08:05:05] CPU #5: 2.93 kH/s
[2022-05-16 08:05:05] CPU #2: 0.63 kH/s
[2022-05-16 08:05:10] Total: 14.09 kH/s
[2022-05-16 08:05:10] CPU #3: 0.63 kH/s
[2022-05-16 08:05:10] CPU #1: 0.63 kH/s
[2022-05-16 08:05:15] CPU #7: 2.87 kH/s
[2022-05-16 08:05:15] Total: 13.99 kH/s
[2022-05-16 08:05:15] CPU #0: 0.57 kH/s
[2022-05-16 08:05:15] CPU #6: 2.88 kH/s
[2022-05-16 08:05:15] CPU #5: 2.93 kH/s
[2022-05-16 08:05:15] CPU #2: 0.63 kH/s
[2022-05-16 08:05:15] CPU #4: 2.82 kH/s
[2022-05-16 08:05:20] Total: 13.94 kH/s
[2022-05-16 08:05:20] CPU #1: 0.63 kH/s
[2022-05-16 08:05:20] CPU #3: 0.63 kH/s
[2022-05-16 08:05:25] CPU #0: 0.63 kH/s
[2022-05-16 08:05:25] CPU #7: 2.88 kH/s
[2022-05-16 08:05:25] Total: 14.01 kH/s
[2022-05-16 08:05:25] CPU #6: 2.81 kH/s
[2022-05-16 08:05:25] CPU #5: 2.95 kH/s
[2022-05-16 08:05:25] CPU #4: 2.93 kH/s
[2022-05-16 08:05:25] CPU #2: 0.64 kH/s
[2022-05-16 08:05:30] Total: 14.03 kH/s
[2022-05-16 08:05:30] CPU #1: 0.63 kH/s
[2022-05-16 08:05:30] CPU #3: 0.63 kH/s
[2022-05-16 08:05:35] CPU #0: 0.62 kH/s
[2022-05-16 08:05:35] CPU #7: 2.77 kH/s
[2022-05-16 08:05:35] Total: 14.05 kH/s
[2022-05-16 08:05:35] CPU #6: 2.88 kH/s
[2022-05-16 08:05:35] CPU #5: 2.94 kH/s
[2022-05-16 08:05:35] CPU #4: 2.93 kH/s
[2022-05-16 08:05:35] CPU #2: 0.64 kH/s
Total Scores: 14.68,14.64,14.62,14.60,14.59,14.52,14.50,14.46,14.45,14.43,14.42,14.41,14.39,14.38,14.20,14.19,14.18,14.16,14.15,14.14,14.13,14.12,14.10,14.09,14.08,14.07,14.06,14.05,14.04,14.03,14.02,14.01,13.99,13.98,13.97,13.96,13.94,13.93,13.91
##########################################################################
Testing clockspeeds again. System health now:
Time big.LITTLE load %cpu %sys %usr %nice %io %irq Temp
08:05:04: 1608/ 600MHz 8.45 100% 0% 99% 0% 0% 0% 84.1°C
Checking cpufreq OPP for cpu0-cpu3 (Cortex-A55):
Cpufreq OPP: 1800 Measured: 1315 (1314.380/1256.665/740.901)
Cpufreq OPP: 1608 Measured: 1290 (1285.258/1282.017/1026.076)
Cpufreq OPP: 1416 Measured: 1615 (1614.998/1323.836/1319.081)
Cpufreq OPP: 1200 Measured: 990 (988.035/981.958/964.547)
Cpufreq OPP: 1008 Measured: 945 (943.062/928.817/896.523)
Cpufreq OPP: 816 Measured: 800 (795.950/790.261/484.054)
Cpufreq OPP: 600 Measured: 620 (618.204/459.044/391.036)
Cpufreq OPP: 408 Measured: 395 (391.388/390.688/386.937)
Checking cpufreq OPP for cpu4-cpu5 (Cortex-A76):
Cpufreq OPP: 2400 Measured: 780 (775.340/745.686/718.466)
Cpufreq OPP: 2208 Measured: 1200 (1198.870/1003.185/705.800)
Cpufreq OPP: 2016 Measured: 1265 (1261.292/864.451/758.835)
Cpufreq OPP: 1800 Measured: 1070 (1066.585/915.515/831.915)
Cpufreq OPP: 1608 Measured: 1480 (1478.597/721.498/682.952)
Cpufreq OPP: 1416 Measured: 1200 (1199.348/1094.915/683.096)
Cpufreq OPP: 1200 Measured: 1205 (1200.880/1053.873/764.504)
Cpufreq OPP: 1008 Measured: 980 (979.648/468.917/292.616)
Cpufreq OPP: 816 Measured: 1055 (1050.289/789.569/789.201)
Cpufreq OPP: 600 Measured: 595 (592.884/592.798/592.459)
Cpufreq OPP: 408 Measured: 395 (394.936/394.900/394.522)