forked from soshishimada/Neural_Physcap_Demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_util.py
103 lines (78 loc) · 4.41 KB
/
pipeline_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import torch
import numpy as np
import rbdl
class PyPerspectivieDivision(torch.autograd.Function):
@staticmethod
def forward(ctx, p_proj):
ctx.save_for_backward(p_proj)
batch_size, _, _ = p_proj.shape
p_proj = p_proj.view(batch_size, -1, 3)
p_proj /= p_proj[:, :, 2].view(batch_size, -1, 1).clone()
p_proj = p_proj[:, :, :-1]
p_proj = p_proj.reshape(batch_size, -1, 1)
return p_proj
@classmethod
def backward(self, ctx, grad_output):
p_proj, = ctx.saved_tensors
p_proj = p_proj.view(p_proj.shape[0], -1, 3)
batch_size, n_points, _ = p_proj.shape
p_proj = p_proj.data.numpy()
grads = np.array([[self.deriv_pd_comp(p_proj[i][j]) for j in range(n_points)] for i in range(batch_size)])
grads = torch.tensor(grads).float()#.cuda()
final_grads = torch.zeros(batch_size, n_points * 2, n_points * 3)#.cuda()
for i in range(n_points):
final_grads[:, i * 2:(i + 1) * 2, i * 3:(i + 1) * 3] = grads[:, i]
final = torch.bmm(grad_output.view(batch_size, 1, -1), final_grads).view(batch_size, -1, 1)
return final
@staticmethod
def deriv_pd_comp(coord):
jacobi = [[1 / coord[2], 0, -coord[0] / (coord[2] ** 2)],
[0, 1 / coord[2], -coord[1] / (coord[2] ** 2)]]
return np.array(jacobi)
class PyForwardKinematicsQuaternionHuman36M(torch.autograd.Function):
def __init__(self, model_addresses, target_joint_ids,delta_t=0.0001):
#self.model = model
self.model_addresses=model_addresses
self.qdot_size=model_addresses["1"].qdot_size
self.target_joint_ids = target_joint_ids
self.q = None
self.jacobi_inits = np.array([np.zeros((3, self.qdot_size)) for i in range(len( target_joint_ids))])
self.delta_t=delta_t
# @staticmethod
def forward(self, sub_ids, q):
self.q = q.data.numpy()
self.models = [self.model_addresses[str(int(x))] for x in sub_ids.numpy()]
coords = torch.tensor([[rbdl.CalcBodyToBaseCoordinates(self.models[batch], self.q[batch].flatten().astype(float), i, np.zeros(3)) for i in self.target_joint_ids] for batch in range(len(self.q))]).view(len(self.q), -1).float()
return coords
# @staticmethod
def backward(self, grad_coords):
jacobis = np.zeros((len(self.q), len(self.target_joint_ids), 3, self.qdot_size)) # np.array([np.zeros((3, self.model.qdot_size)) for i in range(len(self.target_joint_ids))])
for batch in range(len(self.q)):
for i, id in enumerate(self.target_joint_ids):
rbdl.CalcPointJacobian(self.models[batch], self.q[batch].flatten().astype(float), id, np.array([0., 0., 0.]), jacobis[batch][i])
jacobis = torch.tensor(jacobis).view(len(self.q), -1,self.models[0].qdot_size).float()
jacobis_root_ori = jacobis[:,:,3:6]
quat = np.concatenate((self.q[:,3:6].flatten(),self.q[:,-1]),0)
quat_inv = np.array([-quat[0],-quat[1],-quat[2],quat[3]])
jac_angVel_quat = self.get_jacobi_anglularVel_quaternion(quat_inv)
jac_theta_angVelQuatForm=self.get_jacobi_theta_angVel(self.delta_t,order = "xyzw")
quat_jac = torch.FloatTensor(np.dot(jacobis_root_ori,np.dot(jac_theta_angVelQuatForm,jac_angVel_quat)))
final_jac=torch.cat((jacobis[:,:,:3],quat_jac[:,:,:3],jacobis[:,:,6:],quat_jac[:,:,-1].view(quat_jac.shape[0],quat_jac.shape[1],1)),2)#.cuda()
return None,torch.bmm(grad_coords.view(len(self.q), 1, -1), final_jac).view(len(self.q), -1)
class PyProjection(torch.autograd.Function):
@staticmethod
def forward(ctx, P_tensor, p_3D):
#print(P_tensor.shape,p_3D.shape)
N,_,=p_3D.shape
p_3D = p_3D.view(N, -1, 3) # Nx15x3
ones = torch.ones((N, p_3D.shape[1], 1))#.cuda() # Nx15x3
p_3D = torch.cat((p_3D, ones), 2).view(N, -1)
p_proj = torch.bmm(P_tensor, p_3D.view(p_3D.shape[0], p_3D.shape[1], 1))
ctx.save_for_backward(P_tensor)
return p_proj
@staticmethod
def backward(ctx, grad_output):
P_tensor, = ctx.saved_tensors
get_ids = [x for x in range(P_tensor.shape[2]) if (x + 1) % 4 != 0]
P_tensor_deriv= P_tensor[:,:,get_ids]
return None, torch.bmm(grad_output.view(len(grad_output), 1, -1), P_tensor_deriv).view(len(grad_output), -1).float()