forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpleZeroCopy.cu
247 lines (202 loc) · 7.77 KB
/
simpleZeroCopy.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// System includes
#include <assert.h>
#include <stdio.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
/* Add two vectors on the GPU */
__global__ void vectorAddGPU(float *a, float *b, float *c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
c[idx] = a[idx] + b[idx];
}
}
// Allocate generic memory with malloc() and pin it laster instead of using
// cudaHostAlloc()
bool bPinGenericMemory = false;
// Macro to aligned up to the memory size in question
#define MEMORY_ALIGNMENT 4096
#define ALIGN_UP(x, size) (((size_t)x + (size - 1)) & (~(size - 1)))
int main(int argc, char **argv) {
int n, nelem, deviceCount;
int idev = 0; // use default device 0
char *device = NULL;
unsigned int flags;
size_t bytes;
float *a, *b, *c; // Pinned memory allocated on the CPU
float *a_UA, *b_UA, *c_UA; // Non-4K Aligned Pinned memory on the CPU
float *d_a, *d_b, *d_c; // Device pointers for mapped memory
float errorNorm, refNorm, ref, diff;
cudaDeviceProp deviceProp;
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printf("Usage: simpleZeroCopy [OPTION]\n\n");
printf("Options:\n");
printf(" --device=[device #] Specify the device to be used\n");
printf(
" --use_generic_memory (optional) use generic page-aligned for system "
"memory\n");
return EXIT_SUCCESS;
}
/* Get the device selected by the user or default to 0, and then set it. */
if (getCmdLineArgumentString(argc, (const char **)argv, "device", &device)) {
cudaGetDeviceCount(&deviceCount);
idev = atoi(device);
if (idev >= deviceCount || idev < 0) {
fprintf(stderr,
"Device number %d is invalid, will use default CUDA device 0.\n",
idev);
idev = 0;
}
}
// if GPU found supports SM 1.2, then continue, otherwise we exit
if (!checkCudaCapabilities(1, 2)) {
exit(EXIT_SUCCESS);
}
if (checkCmdLineFlag(argc, (const char **)argv, "use_generic_memory")) {
#if defined(__APPLE__) || defined(MACOSX)
bPinGenericMemory = false; // Generic Pinning of System Paged memory is not
// currently supported on Mac OSX
#else
bPinGenericMemory = true;
#endif
}
if (bPinGenericMemory) {
printf("> Using Generic System Paged Memory (malloc)\n");
} else {
printf("> Using CUDA Host Allocated (cudaHostAlloc)\n");
}
checkCudaErrors(cudaSetDevice(idev));
/* Verify the selected device supports mapped memory and set the device
flags for mapping host memory. */
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, idev));
#if CUDART_VERSION >= 2020
if (!deviceProp.canMapHostMemory) {
fprintf(stderr, "Device %d does not support mapping CPU host memory!\n",
idev);
exit(EXIT_SUCCESS);
}
checkCudaErrors(cudaSetDeviceFlags(cudaDeviceMapHost));
#else
fprintf(stderr,
"CUDART version %d.%d does not support "
"<cudaDeviceProp.canMapHostMemory> field\n",
, CUDART_VERSION / 1000, (CUDART_VERSION % 100) / 10);
exit(EXIT_SUCCESS);
#endif
#if CUDART_VERSION < 4000
if (bPinGenericMemory) {
fprintf(
stderr,
"CUDART version %d.%d does not support <cudaHostRegister> function\n",
CUDART_VERSION / 1000, (CUDART_VERSION % 100) / 10);
exit(EXIT_SUCCESS);
}
#endif
/* Allocate mapped CPU memory. */
nelem = 1048576;
bytes = nelem * sizeof(float);
if (bPinGenericMemory) {
#if CUDART_VERSION >= 4000
a_UA = (float *)malloc(bytes + MEMORY_ALIGNMENT);
b_UA = (float *)malloc(bytes + MEMORY_ALIGNMENT);
c_UA = (float *)malloc(bytes + MEMORY_ALIGNMENT);
// We need to ensure memory is aligned to 4K (so we will need to padd memory
// accordingly)
a = (float *)ALIGN_UP(a_UA, MEMORY_ALIGNMENT);
b = (float *)ALIGN_UP(b_UA, MEMORY_ALIGNMENT);
c = (float *)ALIGN_UP(c_UA, MEMORY_ALIGNMENT);
checkCudaErrors(cudaHostRegister(a, bytes, cudaHostRegisterMapped));
checkCudaErrors(cudaHostRegister(b, bytes, cudaHostRegisterMapped));
checkCudaErrors(cudaHostRegister(c, bytes, cudaHostRegisterMapped));
#endif
} else {
#if CUDART_VERSION >= 2020
flags = cudaHostAllocMapped;
checkCudaErrors(cudaHostAlloc((void **)&a, bytes, flags));
checkCudaErrors(cudaHostAlloc((void **)&b, bytes, flags));
checkCudaErrors(cudaHostAlloc((void **)&c, bytes, flags));
#endif
}
/* Initialize the vectors. */
for (n = 0; n < nelem; n++) {
a[n] = rand() / (float)RAND_MAX;
b[n] = rand() / (float)RAND_MAX;
}
/* Get the device pointers for the pinned CPU memory mapped into the GPU
memory space. */
#if CUDART_VERSION >= 2020
checkCudaErrors(cudaHostGetDevicePointer((void **)&d_a, (void *)a, 0));
checkCudaErrors(cudaHostGetDevicePointer((void **)&d_b, (void *)b, 0));
checkCudaErrors(cudaHostGetDevicePointer((void **)&d_c, (void *)c, 0));
#endif
/* Call the GPU kernel using the CPU pointers residing in CPU mapped memory.
*/
printf("> vectorAddGPU kernel will add vectors using mapped CPU memory...\n");
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (float)block.x));
vectorAddGPU<<<grid, block>>>(d_a, d_b, d_c, nelem);
checkCudaErrors(cudaDeviceSynchronize());
getLastCudaError("vectorAddGPU() execution failed");
/* Compare the results */
printf("> Checking the results from vectorAddGPU() ...\n");
errorNorm = 0.f;
refNorm = 0.f;
for (n = 0; n < nelem; n++) {
ref = a[n] + b[n];
diff = c[n] - ref;
errorNorm += diff * diff;
refNorm += ref * ref;
}
errorNorm = (float)sqrt((double)errorNorm);
refNorm = (float)sqrt((double)refNorm);
/* Memory clean up */
printf("> Releasing CPU memory...\n");
if (bPinGenericMemory) {
#if CUDART_VERSION >= 4000
checkCudaErrors(cudaHostUnregister(a));
checkCudaErrors(cudaHostUnregister(b));
checkCudaErrors(cudaHostUnregister(c));
free(a_UA);
free(b_UA);
free(c_UA);
#endif
} else {
#if CUDART_VERSION >= 2020
checkCudaErrors(cudaFreeHost(a));
checkCudaErrors(cudaFreeHost(b));
checkCudaErrors(cudaFreeHost(c));
#endif
}
exit(errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE);
}