This repository has been archived by the owner on Jun 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
display.c
192 lines (164 loc) · 4.73 KB
/
display.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
* Core firmware for the TAP (Technology Access Platform)
*
* Copyright (C) 2016 TheLab.ms
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include "main.h"
unsigned char display_buffer[NUM_ROWS][NUM_COLS * COL_SIZE];
// Maps columns to hardware
struct
{
volatile uint8_t *port;
uint8_t bit;
} static const map_col_to_port[] =
{
// col 0
{ .port = &P3OUT, .bit = BIT1 }, // red
{ .port = &P4OUT, .bit = BIT1 }, // green
{ .port = &P1OUT, .bit = BIT6 }, // blue
// col 1
{ .port = &P4OUT, .bit = BIT0 }, // red
{ .port = &P4OUT, .bit = BIT2 }, // green
{ .port = &P1OUT, .bit = BIT7 }, // blue
// col 2
{ .port = &P4OUT, .bit = BIT3 }, // red
{ .port = &P4OUT, .bit = BIT7 }, // green
{ .port = &P4OUT, .bit = BIT6 }, // blue
// col 3
{ .port = &P3OUT, .bit = BIT0 }, // red
{ .port = &P3OUT, .bit = BIT2 }, // green
{ .port = &P1OUT, .bit = BIT5 }, // blue
// col 4
{ .port = &P1OUT, .bit = BIT4 }, // red
{ .port = &P1OUT, .bit = BIT2 }, // green
{ .port = &P1OUT, .bit = BIT3 }, // blue
// col 5
{ .port = &P5OUT, .bit = BIT0 }, // red
{ .port = &P6OUT, .bit = BIT7 }, // green
// { .port = &P6OUT, .bit = BIT6 }, // blue
{ .port = &P2OUT, .bit = BIT4 }, // blue
// col 6
{ .port = &P6OUT, .bit = BIT0 }, // red
{ .port = &P6OUT, .bit = BIT5 }, // green
{ .port = &P6OUT, .bit = BIT4 }, // blue
// col 7
{ .port = &P6OUT, .bit = BIT1 }, // red
{ .port = &P5OUT, .bit = BIT1 }, // green
{ .port = &P6OUT, .bit = BIT3 }, // blue
};
#define CLOCK_U5() \
do { \
PJOUT &= ~BIT0; \
PJOUT |= BIT0; \
} while(false)
static void draw_row(int row, unsigned char *display_ptr)
{
unsigned int col;
unsigned char current_delay;
// Turn on every LED with a non-zero value
for (col = 0; col < ROW_SIZE; col++)
if (display_ptr[col] > 0)
*map_col_to_port[col].port |= map_col_to_port[col].bit;
else
__delay_cycles(LOW_POWER_DELAY);
// Turn off LEDs as we count up to their value
for (current_delay = 1; current_delay < MAX_DELAY; current_delay++)
{
for (col = 0; col < ROW_SIZE; col++)
if (display_ptr[col] <= current_delay)
*map_col_to_port[col].port &= ~map_col_to_port[col].bit;
else
__delay_cycles(LOW_POWER_DELAY);
}
// Turn off all remaining LEDs
for (col = 0; col < ROW_SIZE; col++)
*map_col_to_port[col].port &= ~map_col_to_port[col].bit;
}
/**
* scan_LEDs() - Main screen refresh
*/
void scan_LEDs()
{
unsigned int row;
// Latch 0 into U5 B input - this will turn on power to first row
PJOUT &= ~BIT3; // Make B input low
CLOCK_U5(); // Clock U5
// First row of LEDs now has power...
PJOUT |= BIT3; //make B input on U5 high so the shift register clocks a single zero across to power each row
// Pulse all columns with required delay times and then power the next row
for (row = 0; row < NUM_ROWS; row++)
{
draw_row(row, display_buffer[row]);
// Enable power to next row of LEDs
// Clock U5 moving the zero across the shift register
CLOCK_U5();
}
#ifdef FRAME_RATE_TEST
P6OUT ^= BIT2; // Toggle P6.2 test point
#endif
}
// On reset U5 to all outputs low - bad! - all LED rows powered, fix this here.
static void init_U5()
{
unsigned int x;
// U5 (row select shift register)
PJDIR |= BIT3; PJDIR |= BIT3; // Make B input of U5 high
PJOUT |= BIT2; PJDIR |= BIT2;
PJDIR |= BIT0; PJOUT |= BIT0;
// Clock all 1s into U5 to turn all ROWS off
for (x = 0; x < 8; x++)
CLOCK_U5();
}
static void init_LEDports()
{
// LED0
P3DIR |= BIT1; P3OUT &= ~BIT1;
P4DIR |= BIT1; P4OUT &= ~BIT1;
P1DIR |= BIT6; P1OUT &= ~BIT6;
// LED1
P4DIR |= BIT0; P4OUT &= ~BIT0;
P4DIR |= BIT2; P4OUT &= ~BIT2;
P1DIR |= BIT7; P1OUT &= ~BIT7;
// LED2
P4DIR |= BIT3; P4OUT &= ~BIT3;
P4DIR |= BIT7; P4OUT &= ~BIT7;
P4DIR |= BIT6; P4OUT &= ~BIT6;
// LED3
P3DIR |= BIT0; P3OUT &= ~BIT0;
P3DIR |= BIT2; P3OUT &= ~BIT2;
P1DIR |= BIT5; P1OUT &= ~BIT5;
// LED4
P1DIR |= BIT4; P1OUT &= ~BIT4;
P1DIR |= BIT2; P1OUT &= ~BIT2;
P1DIR |= BIT3; P1OUT &= ~BIT3;
// LED5
P5DIR |= BIT0;P5OUT &= ~BIT0;
P6DIR |= BIT7; P6OUT &= ~BIT7;
// P6DIR |= BIT6; P6OUT &= ~BIT6;
P2DIR |= BIT4; P2OUT &= ~BIT4;
// LED6
P6DIR |= BIT0; P6OUT &= ~BIT0;
P6DIR |= BIT5; P6OUT &= ~BIT5;
P6DIR |= BIT4; P6OUT &= ~BIT4;
// LED7
P6DIR |= BIT1; P6OUT &= ~BIT1;
P5DIR |= BIT1; P5OUT &= ~BIT1;
P6DIR |= BIT3; P6OUT &= ~BIT3;
}
void display_init()
{
init_U5(); // Clear shift register
init_LEDports();
#ifdef FRAME_RATE_TEST
P6DIR |= BIT2; // Test point
#endif
}