-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathmontecarlopi.go
95 lines (87 loc) · 2.82 KB
/
montecarlopi.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// montecarlopi.go
// description: Calculating pi by the Monte Carlo method
// details:
// implementations of Monte Carlo Algorithm for the calculating of Pi - [Monte Carlo method](https://en.wikipedia.org/wiki/Monte_Carlo_method)
// time complexity: O(n)
// space complexity: O(1)
// author(s): [red_byte](https://github.com/i-redbyte), [Paul Leydier] (https://github.com/paul-leydier)
// see montecarlopi_test.go
package pi
import (
"fmt" // Used for error formatting
"math/rand" // Used for random number generation in Monte Carlo method
"runtime" // Used to get information on available CPUs
"time" // Used for seeding the random number generation
)
func MonteCarloPi(randomPoints int) float64 {
rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
inside := 0
for i := 0; i < randomPoints; i++ {
x := rnd.Float64()
y := rnd.Float64()
if x*x+y*y <= 1 {
inside += 1
}
}
pi := float64(inside) / float64(randomPoints) * 4
return pi
}
// MonteCarloPiConcurrent approximates the value of pi using the Monte Carlo method.
// Unlike the MonteCarloPi function (first version), this implementation uses
// goroutines and channels to parallelize the computation.
// More details on the Monte Carlo method available at https://en.wikipedia.org/wiki/Monte_Carlo_method.
// More details on goroutines parallelization available at https://go.dev/doc/effective_go#parallel.
func MonteCarloPiConcurrent(n int) (float64, error) {
numCPU := runtime.GOMAXPROCS(0)
c := make(chan int, numCPU)
pointsToDraw, err := splitInt(n, numCPU) // split the task in sub-tasks of approximately equal sizes
if err != nil {
return 0, err
}
// launch numCPU parallel tasks
for _, p := range pointsToDraw {
go drawPoints(p, c)
}
// collect the tasks results
inside := 0
for i := 0; i < numCPU; i++ {
inside += <-c
}
return float64(inside) / float64(n) * 4, nil
}
// drawPoints draws n random two-dimensional points in the interval [0, 1), [0, 1) and sends through c
// the number of points which where within the circle of center 0 and radius 1 (unit circle)
func drawPoints(n int, c chan<- int) {
rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
inside := 0
for i := 0; i < n; i++ {
x, y := rnd.Float64(), rnd.Float64()
if x*x+y*y <= 1 {
inside++
}
}
c <- inside
}
// splitInt takes an integer x and splits it within an integer slice of length n in the most uniform
// way possible.
// For example, splitInt(10, 3) will return []int{4, 3, 3}, nil
func splitInt(x int, n int) ([]int, error) {
if x < n {
return nil, fmt.Errorf("x must be < n - given values are x=%d, n=%d", x, n)
}
split := make([]int, n)
if x%n == 0 {
for i := 0; i < n; i++ {
split[i] = x / n
}
} else {
limit := x % n
for i := 0; i < limit; i++ {
split[i] = x/n + 1
}
for i := limit; i < n; i++ {
split[i] = x / n
}
}
return split, nil
}