-
-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathprim.go
58 lines (51 loc) · 1.46 KB
/
prim.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
// The Prim's algorithm computes the minimum spanning tree for a weighted undirected graph
// Worst Case Time Complexity: O(E log V) using Binary heap, where V is the number of vertices and E is the number of edges
// Space Complexity: O(V + E)
// Implementation is based on the book 'Introduction to Algorithms' (CLRS)
package graph
import (
"container/heap"
)
type minEdge []Edge
func (h minEdge) Len() int { return len(h) }
func (h minEdge) Less(i, j int) bool { return h[i].Weight < h[j].Weight }
func (h minEdge) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *minEdge) Push(x interface{}) {
*h = append(*h, x.(Edge))
}
func (h *minEdge) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func (g *Graph) PrimMST(start Vertex) ([]Edge, int) {
var mst []Edge
marked := make([]bool, g.vertices)
h := &minEdge{}
// Pushing neighbors of the start node to the binary heap
for neighbor, weight := range g.edges[int(start)] {
heap.Push(h, Edge{start, Vertex(neighbor), weight})
}
marked[start] = true
cost := 0
for h.Len() > 0 {
e := heap.Pop(h).(Edge)
end := int(e.End)
// To avoid cycles
if marked[end] {
continue
}
marked[end] = true
cost += e.Weight
mst = append(mst, e)
// Check for neighbors of the newly added edge's End vertex
for neighbor, weight := range g.edges[end] {
if !marked[neighbor] {
heap.Push(h, Edge{e.End, Vertex(neighbor), weight})
}
}
}
return mst, cost
}