forked from generative-ai-on-aws/generative-ai-on-aws
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_pipeline.py
188 lines (163 loc) · 6.38 KB
/
data_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gzip
import json
from typing import List, Tuple
import h5py
import numpy as np
import smdistributed.modelparallel.torch as smp
import torch
class BertPretrainingDataset(torch.utils.data.Dataset):
def __init__(self, input_file, max_pred_length):
self.input_file = input_file
self.max_pred_length = max_pred_length
f = h5py.File(input_file, "r")
keys = [
"input_ids",
"input_mask",
"segment_ids",
"masked_lm_positions",
"masked_lm_ids",
"next_sentence_labels",
]
self.inputs = [np.asarray(f[key][:]) for key in keys]
f.close()
def __len__(self):
"Denotes the total number of samples"
return len(self.inputs[0])
def __getitem__(self, index):
[
input_ids,
input_mask,
segment_ids,
masked_lm_positions,
masked_lm_ids,
next_sentence_labels,
] = [
torch.from_numpy(input[index].astype(np.int64))
if indice < 5
else torch.from_numpy(np.asarray(input[index].astype(np.int64)))
for indice, input in enumerate(self.inputs)
]
masked_lm_labels = torch.ones(input_ids.shape, dtype=torch.long) * -1
index = self.max_pred_length
# store number of masked tokens in index
padded_mask_indices = (masked_lm_positions == 0).nonzero(as_tuple=False)
if len(padded_mask_indices) != 0:
index = padded_mask_indices[0].item()
masked_lm_labels[masked_lm_positions[:index]] = masked_lm_ids[:index]
return [input_ids, segment_ids, input_mask, masked_lm_labels, next_sentence_labels]
###### Load GPT pretraining data ######
class GPTPretrainingDataset(torch.utils.data.Dataset):
def __init__(
self,
input_paths: List[str],
max_sequence_length=None,
zipped=True,
use_last_file_only=False,
):
self.input_paths = input_paths
self.max_sequence_length = max_sequence_length
self.zipped = zipped
self.use_last_file_only = use_last_file_only
self.__read_examples(self.input_paths)
def __read_examples(self, paths: List[str]):
self.input_data = []
if self.zipped:
if self.use_last_file_only:
with gzip.open(paths[-1], "rt") as f:
self.input_data = [ln for _, ln in enumerate(f, 1)]
else:
for path in paths:
with gzip.open(path, "rt") as f:
self.input_data.extend([ln for _, ln in enumerate(f, 1)])
else:
if self.use_last_file_only:
with open(paths[-1], "r") as f:
self.input_data = [ln for ln in f]
else:
for path in paths:
with open(path, "r") as f:
self.input_data.extend([ln for ln in f])
# print(f'__Finished building pretraining dataset with {self.iids.shape[0]} rows__')
def __len__(self) -> int:
return len(self.input_data)
def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
obj = json.loads(self.input_data[index])
iids = torch.tensor(obj["input_ids"], dtype=torch.long)
attns = torch.tensor(obj["attention_mask"], dtype=torch.long)
self.actual_sequence_length = len(obj["input_ids"])
if self.actual_sequence_length > self.max_sequence_length:
s_idx = np.random.randint(0, self.actual_sequence_length - self.max_sequence_length)
e_idx = s_idx + self.max_sequence_length
iids = iids[s_idx:e_idx]
attns = attns[s_idx:e_idx]
# Hack to use 4096 seqlen with our existing synthetic data for benchmarking purposes only
# iids = iids.repeat(1,2).flatten()
# attns = attns.repeat(1,2).flatten()
# assert iids.shape[0] == 4096, iids.shape
return iids, attns
class DummyDataset(torch.utils.data.dataset.Dataset):
def __init__(self, length, data_type="GPT"):
if data_type == "GPT":
self.batch = (torch.Tensor(0), torch.Tensor(0))
elif data_type == "BERT":
self.batch = (
torch.Tensor(0),
torch.Tensor(0),
torch.Tensor(0),
torch.Tensor(0),
torch.Tensor(0),
)
self.length = length
def __getitem__(self, index):
return self.batch
def __len__(self):
return self.length
def create_pretraining_dataloader(
input_paths: List[str],
batch_size: int,
max_sequence_length: int,
seed: int,
dp_rank: int,
dp_size: int,
shuffle: bool = False,
zipped: bool = True,
use_last_file_only: bool = False,
data_type: str = "GPT",
):
if smp.pp_rank() == 0:
if data_type == "GPT":
data = GPTPretrainingDataset(
input_paths=input_paths,
max_sequence_length=max_sequence_length,
zipped=zipped,
use_last_file_only=use_last_file_only,
)
elif data_type == "BERT":
if len(input_paths) > 1:
print(
f"BERT data only support single file when calling create_pretraining_dataloader, reading the first file instead.."
)
data = BertPretrainingDataset(
input_file=input_paths[0], max_pred_length=max_sequence_length
)
else:
raise ValueError(f"Unsupported data type {data_type}")
# TODO: set sampler.epoch to correctly shuffle across epochs, else same order will be used for all epochs
# not relevant now as we have no epochs
sampler = torch.utils.data.DistributedSampler(
data, shuffle=shuffle, seed=seed, rank=dp_rank, num_replicas=dp_size, drop_last=True
)
dataloader = torch.utils.data.DataLoader(
data,
sampler=sampler,
batch_size=batch_size,
num_workers=0,
pin_memory=True,
drop_last=True,
)
smp.broadcast(len(dataloader), smp.PP_GROUP)
else:
data_len = smp.recv_from(0, smp.RankType.PP_RANK)
dataset = DummyDataset(data_len * batch_size, data_type=data_type)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, drop_last=True)
return dataloader