Skip to content

Latest commit

 

History

History
590 lines (554 loc) · 40.4 KB

MIR.md

File metadata and controls

590 lines (554 loc) · 40.4 KB

Medium Intermediate Representation (file mir.h)

  • This document describes MIR itself, API for its creation, and MIR textual representation
  • MIR textual representation is assembler like. Each directive or insn should be put on a separate line
  • In MIR textual syntax we use
    • [] for optional construction
    • {} for repeating zero or more times
    • <> for some informal construction description or construction already described or will be described

MIR context

  • MIR API code has an implicit state called by MIR context
  • MIR context is represented by data of MIR_context_t
  • MIR context is created by function MIR_context_t MIR_init (void)
  • Every MIR API function (except for MIR_init) requires MIR context passed through the first argument of type MIR_context_t
  • You can use MIR functions in different threads without any synchronization if they work with different contexts in each thread

MIR program

  • MIR program consists of MIR modules
  • To start work with MIR program, you should first call API function MIR_init
  • API function MIR_finish (MIR_context_t ctx) should be called last. It frees all internal data used to work with MIR program and all IR (insns, functions, items, and modules) created in this context
  • API function MIR_output (MIR_context_t ctx, FILE *f) outputs MIR textual representation of the program into given file
  • API function MIR_scan_string (MIR_context_t ctx, const char *str) reads textual MIR representation given by a string
  • API functions MIR_write (MIR_context_t ctx, FILE *f) and MIR_read (MIR_context_t ctx, FILE *f) outputs and reads binary MIR representation to/from given file. There are also functions MIR_write_with_func (MIR_context_t ctx, const int (*writer_func) (MIR_context_t, uint8_t)) and MIR_read_with_func (MIR_context_t ctx, const int (*reader_func) (MIR_context_t)) to output and read binary MIR representation through a function given as an argument. The reader function should return EOF as the end of the binary MIR representation, the writer function should be return the number of successfully output bytes
    • Binary MIR representation much more compact and faster to read than textual one

MIR data type

  • MIR program works with the following data types:
    • MIR_T_I8 and MIR_T_U8 -- signed and unsigned 8-bit integer values
    • MIR_T_I16 and MIR_T_U16 -- signed and unsigned 16-bit integer values
    • MIR_T_I32 and MIR_T_U32 -- signed and unsigned 32-bit integer values
    • MIR_T_I64 and MIR_T_U64 -- signed and unsigned 64-bit integer values
      • ??? signed and unsigned 64-bit integer types in most cases are interchangeable as insns themselves decide how to treat their value
    • MIR_T_F and MIR_T_D -- IEEE single and double precision floating point values
    • MIR_T_LD - long double values. It is machine-dependent and can be IEEE double, x86 80-bit FP, or IEEE quad precision FP values. If it is the same as double, the double type will be used instead. So please don't expect machine-independence of MIR code working with long double values
    • MIR_T_P -- pointer values. Depending on the target pointer value is actually 32-bit or 64-bit integer value
  • MIR textual representation of the types are correspondingly i8, u8, i16, u16, i32, u32, i64, u64, f, d, p, and v
  • Function int MIR_int_type_p (MIR_type_t t) returns TRUE if given type is an integer one (it includes pointer type too)
  • Function int MIR_fp_type_p (MIR_type_t t) returns TRUE if given type is a floating point type

MIR module

  • Module is a high level entity of MIR program
  • Module is created through API function MIR_module_t MIR_new_module (const char *name)
  • Module creation is finished by calling API function MIR_finish_module
  • You can create only one module at any given time
  • List of all created modules can be gotten by function DLIST (MIR_module_t) *MIR_get_module_list (MIR_context_t ctx)
  • MIR module consists of items. There are following item types (and function for their creation):
    • Function: MIR_func_item
    • Import: MIR_import_item (MIR_item_t MIR_new_import (MIR_context_t ctx, const char *name))
    • Export: MIR_export_item (MIR_item_t MIR_new_export (MIR_context_t ctx, const char *name))
    • Forward declaration: MIR_forward_item (MIR_item_t MIR_new_forward (MIR_context_t ctx, const char *name))
    • Prototype: MIR_proto_item (MIR_new_proto_arr, MIR_new_proto, MIR_new_vararg_proto_arr, MIR_new_vararg_proto analogous to MIR_new_func_arr, MIR_new_func, MIR_new_vararg_func_arr and MIR_new_vararg_func -- see below). The only difference is that two or more prototype argument names can be the same
    • Data: MIR_data_item with optional name (MIR_item_t MIR_new_data (MIR_context_t ctx, const char *name, MIR_type_t el_type, size_t nel, const void *els) or MIR_item_t MIR_new_string_data (MIR_context_t ctx, const char *name, MIR_str_t str))
    • Reference data: MIR_ref_data_item with optional name (MIR_item_t MIR_new_ref_data (MIR_context_t ctx, const char *name, MIR_item_t item, int64_t disp)
      • The address of the item after linking plus disp is used to initialize the data
    • Expression Data: MIR_expr_data_item with optional name (MIR_item_t MIR_new_expr_data (MIR_context_t ctx, const char *name, MIR_item_func_item))
      • Not all MIR functions can be used for expression data. The expression function should have only one result, have no arguments, not use any call or any instruction with memory
      • The expression function is called during linking and its result is used to initialize the data
    • Memory segment: MIR_bss_item with optional name (MIR_item_t MIR_new_bss (MIR_context_t ctx, const char *name, size_t len))
  • Long double data item is changed to double one, if long double coincides with double for given target or ABI
  • Names of MIR functions, imports, and prototypes should be unique in a module
  • API functions MIR_output_item (MIR_context_t ctx, FILE *f, MIR_item_t item) and MIR_output_module (MIR_context_t ctx, FILE *f, MIR_module_t module) output item or module textual representation into given file
  • MIR text module syntax looks the following:
    <module name>: module
                   {<module item>}
                   endmodule

MIR function

  • Function is an module item
  • Function has a frame, a stack memory reserved for each function invocation
  • Function has local variables (sometimes called registers), a part of which are arguments
    • A variable should have an unique name in the function
    • A variable is represented by a structure of type MIR_var_t
      • The structure contains variable name and its type
  • MIR function with its arguments is created through API function MIR_item_t MIR_new_func (MIR_context_t ctx, const char *name, size_t nres, MIR_type_t *res_types, size_t nargs, ...) or function MIR_item_t MIR_new_func_arr (MIR_context_t ctx, const char *name, size_t nres, MIR_type_t *res_types, size_t nargs, MIR_var_t *arg_vars)
    • Argument variables can be any type
      • This type only denotes how the argument value is passed
      • Any integer type argument variable has actually type MIR_T_I64
  • MIR functions with variable number of arguments are created through API functions MIR_item_t MIR_new_vararg_func (MIR_context_t ctx, const char *name, size_t nres, MIR_type_t *res_types, size_t nargs, ...) or function MIR_item_t MIR_new_vararg_func_arr (MIR_context_t ctx, const char *name, size_t nres, MIR_type_t *res_types, size_t nargs, MIR_var_t *arg_vars)
    • nargs and arg_vars define only fixed arguments
    • MIR functions can have more one result but possible number of results and combination of their types are machine-defined. For example, for x86-64 the function can have upto six results and return two integer values, two float or double values, and two long double values in any combination
  • MIR function creation is finished by calling API function MIR_finish_func (MIR_context_t ctx)
  • You can create only one MIR function at any given time
  • MIR text function syntax looks the following (arg-var always has a name besides type):
    <function name>: func {<result type>, } [ arg-var {, <arg-var> } [, ...]]
                     {<insn>}
                     endfun
  • Non-argument function variables are created through API function MIR_reg_t MIR_new_func_reg (MIR_context_t ctx, MIR_func_t func, MIR_type_t type, const char *name)
    • The only permitted integer type for the variable is MIR_T_I64 (or MIR_T_U64???)
    • Names in form t<number> can not be used as they are fixed for internal purposes
    • You can create function variables even after finishing the function creation. This can be used to modify function insns, e.g. for optimizations
  • Non-argument variable declaration syntax in MIR textual representation looks the following:
    local [ <var type>:<var name> {, <var type>:<var name>} ]
  • In MIR textual representation variable should be defined through local before its use

MIR insn operands

  • MIR insns work with operands
  • There are following operands:
    • Signed or unsigned 64-bit integer value operands created through API functions MIR_op_t MIR_new_int_op (MIR_context_t ctx, int64_t v) and MIR_op_t MIR_new_uint_op (MIR_context_t ctx, uint64_t v)
      • In MIR text they are represented the same way as C integer numbers (e.g. octal, decimal, hexadecimal ones)
    • Float, double or long double value operands created through API functions MIR_op_t MIR_new_float_op (MIR_context_t ctx, float v), MIR_op_t MIR_new_double_op (MIR_context_t ctx, double v), and MIR_op_t MIR_new_ldouble_op (MIR_context_t ctx, long double v). Long double operand is changed to double one when long double coincides with double for given target or ABI
      • In MIR text they are represented the same way as C floating point numbers
    • String operands created through API functions MIR_op_t MIR_new_str_op (MIR_context_t ctx, MIR_str_t str)
      • In MIR text they are represented by typedef struct MIR_str {size_t len; const char *s;} MIR_str_t
      • Strings for each operand are put into memory (which can be modified) and the memory address actually presents the string
    • Label operand created through API function MIR_op_t MIR_new_label_op (MIR_context_t ctx, MIR_label_t label)
      • Here label is a special insn created by API function MIR_insn_t MIR_new_label (MIR_context_t ctx)
      • In MIR text, they are represented by unique label name
    • Reference operands created through API function MIR_op_t MIR_new_ref_op (MIR_context_t ctx, MIR_item_t item)
      • In MIR text, they are represented by the corresponding item name
    • Register (variable) operands created through API function MIR_op_t MIR_new_reg_op (MIR_context_t ctx, MIR_reg_t reg)
      • In MIR text they are represented by the corresponding variable name
      • Value of type MIR_reg_t is returned by function MIR_new_func_reg or can be gotten by function MIR_reg_t MIR_reg (MIR_context_t ctx, const char *reg_name, MIR_func_t func), e.g. for argument-variables
    • Memory operands consists of type, displacement, base register, index register and index scale. Memory operand is created through API function MIR_op_t MIR_new_mem_op (MIR_context_t ctx, MIR_type_t type, MIR_disp_t disp, MIR_reg_t base, MIR_reg_t index, MIR_scale_t scale)
      • The arguments define address of memory as disp + base + index * scale
      • Integer type input memory is transformed to 64-bit integer value with sign or zero extension depending on signedness of the type
      • result 64-bit integer value is truncated to integer memory type
      • Memory operand has the following syntax in MIR text (absent displacement means zero one, absent scale means one, scale should be 1, 2, 4, or 8):
	  <type>: <disp>
	  <type>: [<disp>] (<base reg> [, <index reg> [, <scale> ]])
  • API function MIR_output_op (MIR_context_t ctx, FILE *f, MIR_op_t op, MIR_func_t func) outputs the operand textual representation into given file

MIR insns

  • All MIR insns (but call or ret one) expects fixed number of operands
  • Most MIR insns are 3-operand insns: two inputs and one output
  • In majority cases the first insn operand describes where the insn result (if any) will be placed
  • Only register or memory operand can be insn output (result) operand
  • MIR insn can be created through API functions MIR_insn_t MIR_new_insn (MIR_context_t ctx, MIR_insn_code_t code, ...) and MIR_insn_t MIR_new_insn_arr (MIR_context_t ctx, MIR_insn_code_t code, size_t nops, MIR_op_t *ops)
    • Number of operands and their types should be what is expected by the insn being created
    • You can not use MIR_new_insn for the creation of call and ret insns as these insns have a variable number of operands. To create such insns you should use MIR_new_insn_arr or special functions MIR_insn_t MIR_new_call_insn (MIR_context_t ctx, size_t nops, ...) and MIR_insn_t MIR_new_ret_insn (MIR_context_t ctx, size_t nops, ...)
    • Long double insns are changed by double ones if long double coincides with double for given target or ABI
  • You can get insn name and number of insn operands through API functions const char *MIR_insn_name (MIR_context_t ctx, MIR_insn_code_t code) and size_t MIR_insn_nops (MIR_context_t ctx, MIR_insn_t insn)
  • You can add a created insn at the beginning or end of function insn list through API functions MIR_prepend_insn (MIR_context_t ctx, MIR_item_t func, MIR_insn_t insn) and MIR_append_insn (MIR_context_t ctx, MIR_item_t func, MIR_insn_t insn)
  • You can insert a created insn in the middle of function insn list through API functions MIR_insert_insn_after (MIR_context_t ctx, MIR_item_t func, MIR_insn_t after, MIR_insn_t insn) and MIR_insert_insn_before (MIR_context_t ctx, MIR_item_t func, MIR_insn_t before, MIR_insn_t insn)
    • The insn after and before should be already in the list
  • You can remove insn from the function list through API function MIR_remove_insn (MIR_context_t ctx, MIR_item_t func, MIR_insn_t insn)
  • The insn should be not inserted in the list if it is already there
  • The insn should be not removed form the list if it is not there
  • API function MIR_output_insn (MIR_context_t ctx, FILE *f, MIR_insn_t insn, MIR_func_t func, int newline_p) outputs the insn textual representation into given file with a newline at the end depending on value of newline_p
  • Insn has the following syntax in MIR text:
	  {<label name>:} [<insn name> <operand> {, <operand>}]
  • More one insn can be put on the same line by separating the insns by ;

MIR move insns

  • There are following MIR move insns:

    Insn Code Nops Description
    MIR_MOV 2 move 64-bit integer values
    MIR_FMOV 2 move single precision floating point values
    MIR_DMOV 2 move double precision floating point values
    MIR_LDMOV 2 move long double floating point values

MIR integer insns

  • If insn has suffix S in insn name, the insn works with lower 32-bit part of 64-bit integer value

  • The higher part of 32-bit insn result is undefined

  • If insn has prefix U in insn name, the insn treats integer as unsigned integers

  • Some insns has no unsigned variant as MIR is oriented to CPUs with two complement integer arithmetic (the huge majority of all CPUs)

    Insn Code Nops Description
    MIR_EXT8 2 sign extension of lower 8 bit input part
    MIR_UEXT8 2 zero extension of lower 8 bit input part
    MIR_EXT16 2 sign extension of lower 16 bit input part
    MIR_UEXT16 2 zero extension of lower 16 bit input part
    MIR_EXT32 2 sign extension of lower 32 bit input part
    MIR_UEXT32 2 zero extension of lower 32 bit input part
    MIR_NEG 2 changing sign of *64-bit integer value
    MIR_NEGS 2 changing sign of *32-bit integer value
    MIR_ADD, MIR_SUB 3 64-bit integer addition and subtraction
    MIR_ADDS, MIR_SUBS 3 32-bit integer addition and subtraction
    MIR_MUL, MIR_DIV 3 64-bit signed multiplication and divison
    MIR_UMUL, MIR_UDIV 3 64-bit unsigned integer multiplication and divison
    MIR_MULS, MIR_DIVS 3 32-bit signed multiplication and divison
    MIR_UMULS, MIR_UDIVS 3 32-bit unsigned integer multiplication and divison
    MIR_MOD 3 64-bit signed modulo operation
    MIR_UMOD 3 64-bit unsigned integer modulo operation
    MIR_MODS 3 32-bit signed modulo operation
    MIR_UMODS 3 32-bit unsigned integer modulo operation
    MIR_AND, MIR_OR 3 64-bit integer bitwise AND and OR
    MIR_ANDS, MIR_ORS 3 32-bit integer bitwise AND and OR
    MIR_XOR 3 64-bit integer bitwise XOR
    MIR_XORS 3 32-bit integer bitwise XOR
    MIR_LSH 3 64-bit integer left shift
    MIR_LSHS 3 32-bit integer left shift
    MIR_RSH 3 64-bit integer right shift with sign extension
    MIR_RSHS 3 32-bit integer right shift with sign extension
    MIR_URSH 3 64-bit integer right shift with zero extension
    MIR_URSHS 3 32-bit integer right shift with zero extension
    MIR_EQ, MIR_NE 3 equality/inequality of 64-bit integers
    MIR_EQS, MIR_NES 3 equality/inequality of 32-bit integers
    MIR_LT, MIR_LE 3 64-bit signed less than/less than or equal
    MIR_ULT, MIR_ULE 3 64-bit unsigned less than/less than or equal
    MIR_LTS, MIR_LES 3 32-bit signed less than/less than or equal
    MIR_ULTS, MIR_ULES 3 32-bit unsigned less than/less than or equal
    MIR_GT, MIR_GE 3 64-bit signed greater than/greater than or equal
    MIR_UGT, MIR_UGE 3 64-bit unsigned greater than/greater than or equal
    MIR_GTS, MIR_GES 3 32-bit signed greater than/greater than or equal
    MIR_UGTS, MIR_UGES 3 32-bit unsigned greater than/greater than or equal

MIR floating point insns

  • If insn has prefix F in insn name, the insn is single precision float point insn. Its operands should have MIR_T_F type

  • If insn has prefix D in insn name, the insn is double precision float point insn. Its operands should have MIR_T_D type

  • Otherwise, insn has prefix LD in insn name and the insn is a long double insn. Its operands should have MIR_T_LD type.

  • The result of comparison insn is a 64-bit integer value, so the result operand should be of integer type

    Insn Code Nops Description
    MIR_F2I, MIR_D2I, MIR_LD2I 2 transforming floating point value into 64-bit integer
    MIR_F2D 2 transforming single to double precision FP value
    MIR_F2LD 2 transforming single precision to long double FP value
    MIR_D2F 2 transforming double to single precision FP value
    MIR_D2LD 2 transforming double precision to long double FP value
    MIR_LD2F 2 transforming long double to single precision FP value
    MIR_LD2D 2 transforming long double to double precision FP value
    MIR_I2F, MIR_I2D, MIR_I2LD 2 transforming 64-bit integer into a floating point value
    MIR_UI2F, MIR_UI2D, MIR_UI2LD 2 transforming unsigned 64-bit integer into a floating point value
    MIR_FNEG, MIR_DNEG, MIR_LDNEG 2 changing sign of floating point value
    MIR_FADD, MIR_FSUB 3 single precision addition and subtraction
    MIR_DADD, MIR_DSUB 3 double precision addition and subtraction
    MIR_LDADD, MIR_LDSUB 3 long double addition and subtraction
    MIR_FMUL, MIR_FDIV 3 single precision multiplication and divison
    MIR_DMUL, MIR_DDIV 3 double precision multiplication and divison
    MIR_LDMUL, MIR_LDDIV 3 long double multiplication and divison
    MIR_FEQ, MIR_FNE 3 equality/inequality of single precision values
    MIR_DEQ, MIR_DNE 3 equality/inequality of double precision values
    MIR_LDEQ, MIR_LDNE 3 equality/inequality of long double values
    MIR_FLT, MIR_FLE 3 single precision less than/less than or equal
    MIR_DLT, MIR_DLE 3 double precision less than/less than or equal
    MIR_LDLT, MIR_LDLE 3 long double less than/less than or equal
    MIR_FGT, MIR_FGE 3 single precision greater than/greater than or equal
    MIR_DGT, MIR_DGE 3 double precision greater than/greater than or equal
    MIR_LDGT, MIR_LDGE 3 long double greater than/greater than or equal

MIR branch insns

  • The first operand of the insn should be label

    Insn Code Nops Description
    MIR_JMP 1 unconditional jump to the label
    MIR_BT 2 jump to the label when 2nd 64-bit operand is nonzero
    MIR_BTS 2 jump to the label when 2nd 32-bit operand is nonzero
    MIR_BF 2 jump to the label when 2nd 64-bit operand is zero
    MIR_BFS 2 jump to the label when 2nd 32-bit operand is zero

MIR switch insn

  • The first operand of MIR_SWITCH insn should have an integer value from 0 to N - 1 inclusive
  • The rest operands should be N labels, where N > 0
  • Execution of the insn will be an jump on the label corresponding to the first operand value
  • If the first operand value is out of the range of permitted values, the execution result is undefined

MIR integer comparison and branch insn

  • The first operand of the insn should be label. Label will be the next executed insn if the result of comparison is non-zero

    Insn Code Nops Description
    MIR_BEQ, MIR_BNE 3 jump on 64-bit equality/inequality
    MIR_BEQS, MIR_BNES 3 jump on 32-bit equality/inequality
    MIR_BLT, MIR_BLE 3 jump on signed 64-bit less than/less than or equal
    MIR_UBLT, MIR_UBLE 3 jump on unsigned 64-bit less than/less than or equal
    MIR_BLTS, MIR_BLES 3 jump on signed 32-bit less than/less than or equal
    MIR_UBLTS, MIR_UBLES 3 jump on unsigned 32-bit less than/less than or equal
    MIR_BGT, MIR_BGE 3 jump on signed 64-bit greater than/greater than or equal
    MIR_UBGT, MIR_UBGE 3 jump on unsigned 64-bit greater than/greater than or equal
    MIR_BGTS, MIR_BGES 3 jump on signed 32-bit greater than/greater than or equal
    MIR_UBGTS, MIR_UBLES 3 jump on unsigned 32-bit greater than/greater than or equal

MIR floating point comparison and branch insn

  • The first operand of the insn should be label. Label will be the next executed insn if the result of comparison is non-zero

  • See comparison semantics in the corresponding comparison insns

    Insn Code Nops Description
    MIR_FBEQ, MIR_FBNE 3 jump on single precision equality/inequality
    MIR_DBEQ, MIR_DBNE 3 jump on double precision equality/inequality
    MIR_LDBEQ, MIR_LDBNE 3 jump on long double equality/inequality
    MIR_FBLT, MIR_FBLE 3 jump on single precision less than/less than or equal
    MIR_DBLT, MIR_DBLE 3 jump on double precision less than/less than or equal
    MIR_LDBLT, MIR_LDBLE 3 jump on long double less than/less than or equal
    MIR_FBGT, MIR_FBGE 3 jump on single precision greater than/greater than or equal
    MIR_DBGT, MIR_DBGE 3 jump on double precision greater than/less/ than or equal
    MIR_LDBGT, MIR_LDBGE 3 jump on long double greater than/less/ than or equal

MIR return insn

  • Return insn has zero or more operands
  • Return insn operands should correspond to return types of the function
  • 64-bit integer value is truncated to the corresponding function return type first
  • The return values will be the function call values

MIR_CALL insn

  • The insn has variable number of operands
  • The first operand is a prototype reference operand
  • The second operand is a called function address
    • The prototype should correspond MIR function definition if function address represents a MIR function
    • The prototype should correspond C function definition if the address is C function address
  • If the prototype has N return types, the next N operands are output operands which will contain the result values of the function call
  • The subsequent operands are arguments. Their types and number and should be the same as in the prototype
    • Integer arguments are truncated according to integer prototype argument type

MIR_INLINE insn

  • This insn is analogous to MIR_CALL but after linking this insn will be changed by inlined function body if it is possible
  • Calls of vararg functions are never inlined

MIR_ALLOCA insn

  • Reserve memory on the stack whose size is given as the 2nd operand and assign the memory address to the 1st operand
  • The reserved memory will be aligned according target ABI

MIR_BSTART and MIR_BEND insns

  • MIR users can use them implement blocks with automatic deallocation of memory allocated by MIR_ALLOCA inside the blocks. But mostly these insns are used to implement call inlining of functions using alloca
  • The both insns use one operand
  • The first insn saves the stack pointer in the operand
  • The second insn restores stack pointer from the operand

MIR_VA_START, MIR_VA_ARG, and MIR_VA_END insns

  • These insns are only for variable number arguments functions
  • MIR_VA_START and MIR_VA_END have one input operand, an address of va_list structure (see C stdarg.h for more details). Unlike C va_start, MIR_VA_START just takes one parameter
  • MIR_VA_ARG takes va_list and any memory operand and returns address of the next argument in the 1st insn operand. The memory operand type defines the type of the argument
  • va_list operand can be memory with undefined type. In this case address of the va_list is not in the memory but is the memory address

MIR API example

  • The following code on C creates MIR analog of C code int64_t loop (int64_t arg1) {int64_t count = 0; while (count < arg1) count++; return count;}
  MIR_module_t m = MIR_new_module (ctx, "m");
  MIR_item_t func = MIR_new_func (ctx, "loop", MIR_T_I64, 1, MIR_T_I64, "arg1");
  MIR_reg_t COUNT = MIR_new_func_reg (ctx, func->u.func, MIR_T_I64, "count");
  MIR_reg_t ARG1 = MIR_reg (ctx, "arg1", func->u.func);
  MIR_label_t fin = MIR_new_label (ctx), cont = MIR_new_label (ctx);

  MIR_append_insn (ctx, func, MIR_new_insn (ctx, MIR_MOV, MIR_new_reg_op (ctx, COUNT),
                                            MIR_new_int_op (ctx, 0)));
  MIR_append_insn (ctx, func, MIR_new_insn (ctx, MIR_BGE, MIR_new_label_op (ctx, fin),
                                            MIR_new_reg_op (ctx, COUNT), MIR_new_reg_op (ctx, ARG1)));
  MIR_append_insn (ctx, func, cont);
  MIR_append_insn (ctx, func, MIR_new_insn (ctx, MIR_ADD, MIR_new_reg_op (ctx, COUNT),
                                            MIR_new_reg_op (ctx, COUNT), MIR_new_int_op (ctx, 1)));
  MIR_append_insn (ctx, func, MIR_new_insn (ctx, MIR_BLT, MIR_new_label_op (ctx, cont),
                                            MIR_new_reg_op (ctx, COUNT), MIR_new_reg_op (ctx, ARG1)));
  MIR_append_insn (ctx, func, fin);
  MIR_append_insn (ctx, func, MIR_new_ret_insn (ctx, 1, MIR_new_reg_op (ctx, COUNT)));
  MIR_finish_func (ctx);
  MIR_finish_module (ctx);

MIR text example

m_sieve:  module
          export sieve
sieve:    func i32, i32:N
          local i64:iter, i64:count, i64:i, i64:k, i64:prime, i64:temp, i64:flags
          alloca flags, 819000
          mov iter, 0
loop:     bge fin, iter, N
          mov count, 0;  mov i, 0
loop2:    bge fin2, i, 819000
          mov u8:(flags, i), 1;  add i, i, 1
          jmp loop2
fin2:     mov i, 0
loop3:    bge fin3, i, 819000
          beq cont3, u8:(flags,i), 0
          add temp, i, i;  add prime, temp, 3;  add k, i, prime
loop4:    bge fin4, k, 819000
          mov u8:(flags, k), 0;  add k, k, prime
          jmp loop4
fin4:     add count, count, 1
cont3:    add i, i, 1
          jmp loop3
fin3:     add iter, iter, 1
          jmp loop
fin:      rets count
          endfunc
          endmodule
m_ex100:  module
format:   string "sieve (10) = %d\n"
p_printf: proto p:fmt, i32:v
p_seive:  proto i32, i32:iter
          export ex100
          import sieve, printf
ex100:    func v
          local i64:r
          call p_sieve, sieve, r, 100
          call p_printf, printf, format, r
          endfunc
          endmodule

Other MIR API functions

  • MIR API can find a lot of errors. They are reported through a error function of type void (*MIR_error_func_t) (MIR_context ctx, MIR_error_type_t error_type, const char *message). The function is considered to never return. To see all error types, please look at the definition of error type MIR_error_type_t in file mir.h
  • You can get and set up the current error function through API functions MIR_error_func_t MIR_get_error_func (MIR_context ctx) and MIR_set_error_func (MIR_context ctx, MIR_error_func_t func).
    • The default error function prints the message into stderr and call exit (1)
  • MIR is pretty flexible and can describe complex insns, e.g. insns whose all operands are memory. Sometimes you need a very simple form of MIR representation. During load of module all its functions are simplified as much as possible by adding new insns and registers resulting in a form in which:
    • immediate, memory, reference operands can be used only in move insns
    • memory have only base register (no displacement and index register)
    • string and float immediate operands (if mem_float_p) are changed onto references for new string and data items
  • Before execution of MIR code (through interpreter or machine code generated by JIT), you need to load and link it
    • You can load MIR module through API function MIR_load_module (MIR_context ctx, MIR_module_t m). The function simplifies module code. It also allocates the module data/bss and makes visible the exported module items to other module during subsequent linking. There is a guarantee that the different data/bss items will be in adjacent memory if the data/bss items go one after another and all the data/bss items except the first one are anonymous (it means they have no name). Such adjacent data/bss items are called a section. Alignment of the section is malloc alignment. There are no any memory space between data/bss in the section. If you need to provide necessary alignment of a data/bss in the section you should do it yourself by putting additional anonymous data/bss before given data/bss if it is necessary. BSS memory is initialized by zero and data memory is initialized by the corresponding data. If there is already an exported item with the same name, it will be not visible for linking anymore. Such visibility mechanism permits usage of different versions of the same function
    • Reference data are initialized not during loading but during linking after the referenced item address is known. The address is used for the data initialization
    • Expression data are also initialized not during loading but during linking after all addresses are known. The expression function is evaluated by the interpreter and its evaluation result is used for the data initialization. For example, if you need to initialize data by item address plus offset you should use an expression data
    • MIR permits to use imported items not implemented in MIR, for example to use C standard function strcmp. You need to inform MIR about it. API function MIR_load_external (MIR_context ctx, const char *name, void *addr) informs that imported items with given name have given address (e.g. C function address or data)
    • Imports/exports of modules loaded since the last link can be linked through API function MIR_link (MIR_context ctx, void (*set_interface) (MIR_item_t item), void * (*import_resolver) (const char *))
    • MIR_link function inlines most MIR_INLINE calls
    • MIR_link function also sets up call interface
      • If you pass MIR_set_interp_interface to MIR_link, then called functions from MIR code will be interpreted
      • If you pass MIR_set_gen_interface to MIR_link, then MIR-generator will generate machine code for all loaded MIR functions and called functions from MIR code will execute the machine code
      • If you pass MIR_set_lazy_gen_interface to MIR_link, then MIR-generator will generate machine code only on the first function call and called functions from MIR code will execute the machine code
      • If you pass non-null import_resolver function, it will be called for defining address for import without definition. The function get the import name and return the address which will be used for the import item. This function can be useful for searching dlopen library symbols when use of MIR_load_external is not convenient

MIR code execution

  • Linked MIR code can be executed by an interpreter or machine code generated by MIR generator

MIR code interpretation

  • The interpreter is an obligatory part of MIR API because it can be used during linking
  • The interpreter is automatically initialized and finished with MIR API initialization and finishing
  • The interpreter works with values represented by type MIR_val_t which is union union {..., int64_t i; uint64_t u; float f; double d; long double d;}
  • You can execute a MIR function code by API functions void MIR_interp (MIR_context ctx, MIR_item_t func_item, MIR_val_t *results, size_t nargs, ...) and void MIR_interp_arr (MIR_context ctx, MIR_item_t func_item, MIR_val_t *results, size_t nargs, MIR_val_t *vals)
    • The function results are returned through parameter results. You should pass a container of enough size to return all function results.
  • You can execute a MIR function code also through C function call mechanism. First you need to setup the C function interface through API function MIR_set_interp_interface (MIR_context ctx, MIR_item_t func_item). After that you can func_item->addr to call the MIR function as usual C function
    • C function interface is implemented by generation of machine code specialized for MIR function. Therefore the interface works only on the same targets as MIR generator

MIR generator (file mir-gen.h)

  • Before use of MIR generator you should initialize it by API function MIR_gen_init (MIR_context ctx)
  • API function MIR_gen_finish (MIR_context ctx) should be called last after any generator usage. It frees all internal generator data
  • API function void *MIR_gen (MIR_context ctx, MIR_item_t func_item) generates machine code of given MIR function and returns an address to call it. You can call the code as usual C function by using this address as the called function address
  • API function void MIR_gen_set_debug_file (MIR_context_t ctx, FILE *f) sets up MIR generator debug file to f. If it is not NULL a lot of debugging and optimization information will be output to the file. It is useful mostly for MIR developers
  • API function void MIR_gen_set_optimize_level (MIR_context_t ctx, unsigned int level) sets up optimization level for MIR generator:
    • 0 means only register allocator and machine code generator work
    • 1 means additional code selection task. On this level MIR generator creates more compact and faster code than on zero level with practically on the same speed
    • 2 means additionally common sub-expression elimination and sparse conditional constant propagation. This is a default level. This level is valuable if you generate bad input MIR code with a lot redundancy and constants. The generation speed on level 1 is about 50% faster than on level 2
    • 3 means additionally register renaming and loop invariant code motion. The generation speed on level 2 is about 50% faster than on level 3