forked from google/gemma.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ops.h
682 lines (606 loc) · 26 KB
/
ops.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
// Copyright 2024 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Include guard for non-SIMD code.
#ifndef THIRD_PARTY_GEMMA_CPP_OPS_H_
#define THIRD_PARTY_GEMMA_CPP_OPS_H_
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <cmath>
#include <random>
// copybara:import_next_line:gemma_cpp
#include "compression/compress.h"
#include "hwy/base.h"
#include "hwy/contrib/thread_pool/thread_pool.h"
#include "hwy/profiler.h"
#endif // THIRD_PARTY_GEMMA_CPP_OPS_H_
// Include guard for (potentially) SIMD code.
#if defined(THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE) == defined(HWY_TARGET_TOGGLE)
#ifdef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
#undef THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
#else
#define THIRD_PARTY_GEMMA_CPP_OPS_TOGGLE
#endif
// copybara:import_next_line:gemma_cpp
#include "compression/compress-inl.h"
#include "hwy/cache_control.h" // FlushStream
#include "hwy/contrib/algo/transform-inl.h"
#include "hwy/contrib/dot/dot-inl.h"
#include "hwy/contrib/math/math-inl.h"
#include "hwy/contrib/matvec/matvec-inl.h"
HWY_BEFORE_NAMESPACE();
namespace gcpp {
namespace HWY_NAMESPACE {
namespace hn = hwy::HWY_NAMESPACE;
HWY_INLINE constexpr size_t MaxCols() {
// Vec + mat rows should fit into 32 KiB L1.
return 2048;
}
template <size_t kOuter>
HWY_INLINE constexpr size_t RowsPerStrip() {
// Aim for 128 work items to reduce pool overhead. Must be at least one
// vector; prefer a power of two for faster division.
constexpr size_t kRowsPerStrip =
HWY_MAX(hn::ScalableTag<float>().MaxLanes(),
1ULL << hwy::FloorLog2(kOuter / 128));
return kRowsPerStrip;
}
// Simple version without tiling nor threading.
template <size_t kOuter, size_t kInner, typename MatT, size_t kCapacity,
typename VecT>
HWY_INLINE void MatVecLoop(const CompressedArray<MatT, kCapacity>& mat,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
float* HWY_RESTRICT out) {
PROFILER_ZONE("MatVecLoop");
const hn::ScalableTag<float> df;
for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) {
const size_t row_ofs = mat_ofs + idx_row * kInner;
out[idx_row] = Dot(df, mat, row_ofs, vec_aligned, kInner);
}
}
// Simple version without tiling nor threading, but two offsets/outputs.
template <size_t kOuter, size_t kInner, typename MatT, size_t kCapacity,
typename VecT>
HWY_INLINE void TwoOfsMatVecLoop(const CompressedArray<MatT, kCapacity>& mat,
const size_t mat_ofs0, const size_t mat_ofs1,
const VecT* HWY_RESTRICT vec_aligned,
float* HWY_RESTRICT out0,
float* HWY_RESTRICT out1) {
PROFILER_ZONE("MatVecLoop");
const hn::ScalableTag<float> df;
for (size_t idx_row = 0; idx_row < kOuter; ++idx_row) {
const size_t row_ofs0 = mat_ofs0 + (idx_row)*kInner;
const size_t row_ofs1 = mat_ofs1 + (idx_row)*kInner;
out0[idx_row] = Dot(df, mat, row_ofs0, vec_aligned, kInner);
out1[idx_row] = Dot(df, mat, row_ofs1, vec_aligned, kInner);
}
}
namespace detail {
// For each i = [0, num_rows), compute partial (length `num_cols`) dot product
// of row i with `vec_aligned` and add into `out[i]`. The upper-left coordinate
// of the tile is r0, c0.
template <class DF, typename MatT, size_t kCapacity, typename VecT>
HWY_INLINE void AccumulatePartialDotProducts(
DF df, const CompressedArray<MatT, kCapacity>& mat, size_t mat_ofs,
size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
out[idx_row] += Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
// Same as above, but sets out[i] to the first partial dot product, which
// avoids having to zero-initialize and accumulate.
template <class DF, typename MatT, size_t kCapacity, typename VecT>
HWY_INLINE void SetFirstPartialDotProducts(
DF df, const CompressedArray<MatT, kCapacity>& mat, size_t mat_ofs,
size_t mat_stride, size_t r0, size_t c0, size_t num_rows, size_t num_cols,
const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) {
for (size_t idx_row = 0; idx_row < num_rows; ++idx_row) {
const size_t row_ofs = mat_ofs + (r0 + idx_row) * mat_stride;
out[idx_row] = Dot(df, mat, row_ofs + c0, vec_aligned + c0, num_cols);
}
}
// Adds together partial dot products for all tiles with the same r0 (a
// horizontal strip of the entire matrix); the result is the full dot product
// for rows r in [r0, r0 + num_rows), which we store into in out[r - r0].
template <class DF, typename MatT, size_t kCapacity, typename VecT>
HWY_INLINE void FullDotProductsForStrip(
DF df, const CompressedArray<MatT, kCapacity>& mat, size_t mat_ofs,
size_t mat_stride, size_t r0, size_t num_rows,
const VecT* HWY_RESTRICT vec_aligned, float* HWY_RESTRICT out) {
// Tall and skinny: set `out` to the single dot product.
if (mat_stride < MaxCols()) {
SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows,
mat_stride, vec_aligned, out);
return;
}
// We have at least MaxCols, so start by setting `out` to that:
SetFirstPartialDotProducts(df, mat, mat_ofs, mat_stride, r0, 0, num_rows,
MaxCols(), vec_aligned, out);
// For further multiples of MaxCols, accumulate. Remainders handled below.
size_t c0 = MaxCols();
for (; c0 <= mat_stride - MaxCols(); c0 += MaxCols()) {
AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows,
MaxCols(), vec_aligned, out);
}
if (c0 < mat_stride) { // Final cols
AccumulatePartialDotProducts(df, mat, mat_ofs, mat_stride, r0, c0, num_rows,
mat_stride - c0, vec_aligned, out);
}
}
} // namespace detail
// Stores dot products of rows with `vec_aligned` to a buffer, then stores them
// to `out`.
template <size_t kOuter, size_t kInner, typename MatT, size_t kCapacity,
typename VecT>
HWY_INLINE void MatVec(const CompressedArray<MatT, kCapacity>& mat,
const size_t mat_ofs,
const VecT* HWY_RESTRICT const vec_aligned,
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
PROFILER_ZONE("MatVec");
const hn::ScalableTag<float> df;
constexpr size_t kRowsPerStrip = RowsPerStrip<kOuter>();
constexpr size_t kNumStrips = kOuter / kRowsPerStrip;
// For each entire strip.
pool.Run(0, kNumStrips, [&](const uint64_t strip, size_t thread) HWY_ATTR {
PROFILER_ZONE("MatVec.lambda");
const size_t r0 = strip * kRowsPerStrip;
detail::FullDotProductsForStrip(df, mat, mat_ofs, kInner, r0, kRowsPerStrip,
vec_aligned, out + r0);
});
// Remaining rows
const size_t r0 = kNumStrips * kRowsPerStrip;
if (r0 < kOuter) {
PROFILER_ZONE("MatVec remainder");
const size_t num_rows = kOuter - r0;
detail::FullDotProductsForStrip(df, mat, mat_ofs, kInner, r0, num_rows,
vec_aligned, out + r0);
}
}
template <class D, HWY_IF_F32_D(D)>
static HWY_INLINE hn::Vec<D> Gelu(D d, hn::Vec<D> v) {
const hn::Vec<D> kMul = hn::Set(d, 0.044715f);
const hn::Vec<D> kSqrt2OverPi = hn::Set(d, 0.797884560804236f);
const hn::Vec<D> kHalf = hn::Set(d, 0.5f);
// tanh approximation matches training.
const hn::Vec<D> v3 = hn::Mul(hn::Mul(v, v), v);
const hn::Vec<D> arg = hn::Mul(kSqrt2OverPi, hn::MulAdd(kMul, v3, v));
// 0.5 * (1 + tan) = MulAdd(0.5, tan, 0.5).
const hn::Vec<D> cdf = hn::MulAdd(kHalf, hn::Tanh(d, arg), kHalf);
return hn::Mul(v, cdf);
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void Gelu(float* HWY_RESTRICT x,
size_t size) {
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
hn::Transform(D(), x, size, [](D d, hn::Vec<D> v) { return Gelu(d, v); });
}
// out[i] = BF(mul[i] * Gelu(gelu_in[i]))
static HWY_NOINLINE HWY_MAYBE_UNUSED void GeluMulToBF16(
const float* HWY_RESTRICT gelu_in, const float* HWY_RESTRICT mul,
hwy::bfloat16_t* HWY_RESTRICT out, size_t size) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<float> df;
const hn::Repartition<hwy::bfloat16_t, decltype(df)> dbf;
const size_t NF = hn::Lanes(df);
using VF = hn::Vec<decltype(df)>;
size_t i = 0;
if (size >= 2 * NF) {
for (; i < size - 2 * NF; i += 2 * NF) {
const VF mul0 = hn::LoadU(df, mul + i);
const VF mul1 = hn::LoadU(df, mul + i + NF);
const VF g0 = hn::Mul(mul0, Gelu(df, hn::LoadU(df, gelu_in + i)));
const VF g1 = hn::Mul(mul1, Gelu(df, hn::LoadU(df, gelu_in + i + NF)));
const hn::Vec<decltype(dbf)> bf = hn::OrderedDemote2To(dbf, g0, g1);
hn::StoreU(bf, dbf, out + i);
}
}
if (i != size) {
const size_t remaining = size - i;
const VF mul0 = hn::LoadN(df, mul + i, remaining);
const VF g0 =
hn::Mul(mul0, Gelu(df, hn::LoadN(df, gelu_in + i, remaining)));
const hn::Half<decltype(dbf)> dbfh;
const hn::Vec<decltype(dbfh)> bfh = hn::DemoteTo(dbfh, g0);
hn::StoreN(bfh, dbfh, out + i, remaining);
}
}
// Two matrices, same vector
// TODO(janwas): apply optimizations from MatVec/replace with above overload
template <size_t kOuter, size_t kInner, typename MatT, size_t kCapacity,
typename VecT>
HWY_NOINLINE void TwoMatVec(const CompressedArray<MatT, kCapacity>& mat0,
const CompressedArray<MatT, kCapacity>& mat1,
const size_t mat_ofs,
const VecT* HWY_RESTRICT vec_aligned,
float* HWY_RESTRICT out0, float* HWY_RESTRICT out1,
hwy::ThreadPool& pool) {
const hn::ScalableTag<float> df;
const size_t NF = hn::Lanes(df);
// Process multiple rows at a time so that we write multiples of a cache line
// to avoid false sharing (>= 64).
constexpr size_t kRowsPerStrip = 128 / sizeof(float);
const uint32_t num_strips = kOuter / kRowsPerStrip;
// No remainder handling after ThreadPool.
static_assert(kOuter % kRowsPerStrip == 0, "Add remainder handling");
// Required for Stream loop, otherwise we might have partial vectors.
HWY_DASSERT(kRowsPerStrip >= NF);
pool.Run(0, num_strips,
[&](const uint32_t strip, size_t /*thread*/) HWY_ATTR {
// MSVC workaround: duplicate to ensure constexpr.
constexpr size_t kRowsPerStrip = 128 / sizeof(float);
// Software write-combining to avoid cache pollution from out.
// Although `out` may be used later, keeping it out of the cache
// now and avoiding RFOs is a consistent 5% overall win.
HWY_ALIGN float buf0[kRowsPerStrip];
HWY_ALIGN float buf1[kRowsPerStrip];
// Only handle entire strips here because the Stream is not masked.
const size_t begin = strip * kRowsPerStrip;
for (size_t idx_row = 0; idx_row < kRowsPerStrip; ++idx_row) {
const size_t row_ofs = mat_ofs + (begin + idx_row) * kInner;
buf0[idx_row] = Dot(df, mat0, row_ofs, vec_aligned, kInner);
buf1[idx_row] = Dot(df, mat1, row_ofs, vec_aligned, kInner);
}
HWY_UNROLL(4)
for (size_t i = 0; i != kRowsPerStrip; i += NF) {
hn::Stream(hn::Load(df, buf0 + i), df, out0 + begin + i);
}
HWY_UNROLL(4)
for (size_t i = 0; i != kRowsPerStrip; i += NF) {
hn::Stream(hn::Load(df, buf1 + i), df, out1 + begin + i);
}
});
hwy::FlushStream();
}
// Baseline Naive MatMul
template <size_t kOuter, size_t kInner, size_t kBatchSize, typename MatT,
size_t kCapacity, typename VecT>
HWY_NOINLINE void MatMul(const CompressedArray<MatT, kCapacity>& mat,
const size_t mat_ofs, const VecT* HWY_RESTRICT vec,
float* HWY_RESTRICT out, hwy::ThreadPool& pool) {
for (size_t i = 0; i < kBatchSize; ++i) {
MatVec<kOuter, kInner, MatT, kCapacity, VecT>(
mat, mat_ofs, vec + i * kInner, out + i * kOuter, pool);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED float Dot(const float* HWY_RESTRICT a,
const float* HWY_RESTRICT b,
size_t size) {
const hn::ScalableTag<float> d;
HWY_DASSERT(size >= hn::Lanes(d));
HWY_DASSERT(size % hn::Lanes(d) == 0);
constexpr int kAssumptions =
hn::Dot::kAtLeastOneVector | hn::Dot::kMultipleOfVector;
return hn::Dot::Compute<kAssumptions>(d, a, b, size);
}
// = Dot(a, a, size), but that is not allowed due to HWY_RESTRICT.
static HWY_NOINLINE HWY_MAYBE_UNUSED float SquaredL2(
const float* HWY_RESTRICT a, size_t size) {
float total = 0.f;
for (size_t i = 0; i < size; ++i) {
total += a[i] * a[i];
}
return total;
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const float* HWY_RESTRICT weight,
float* HWY_RESTRICT out, size_t size) {
constexpr float eps = 1e-6f;
float ss = SquaredL2(x, size);
ss = 1.0f / sqrtf(ss / static_cast<int>(size) + eps);
for (size_t j = 0; j < size; j++) {
// Note 1.0f centering here
out[j] = (1.0f + weight[j]) * (ss * x[j]);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const hwy::bfloat16_t* HWY_RESTRICT weight,
float* HWY_RESTRICT out, size_t size) {
constexpr float eps = 1e-6f;
float ss = SquaredL2(x, size);
ss = 1.0f / sqrtf(ss / static_cast<int>(size) + eps);
for (size_t j = 0; j < size; j++) {
// Note 1.0f centering here
out[j] = (1.0f + hwy::F32FromBF16(weight[j])) * (ss * x[j]);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace(
const float* HWY_RESTRICT weight, float* HWY_RESTRICT inout, size_t size) {
constexpr float eps = 1e-6f;
float ss = SquaredL2(inout, size);
ss = 1.0f / sqrtf(ss / static_cast<int>(size) + eps);
for (size_t j = 0; j < size; j++) {
// Note 1.0f centering here
inout[j] = (1.0f + weight[j]) * (ss * inout[j]);
}
}
// w=bf16 -> f
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNormInplace(
const hwy::bfloat16_t* HWY_RESTRICT weight, float* HWY_RESTRICT inout,
const size_t size) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<hwy::bfloat16_t> dbf;
const hn::Repartition<float, decltype(dbf)> df32;
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
const float ss = SquaredL2(inout, size);
const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / static_cast<int>(size) + eps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {
const hn::Vec<decltype(dbf)> w16 = hn::LoadU(dbf, weight + i);
const VF w0 = hn::PromoteLowerTo(df32, w16);
const VF w1 = hn::PromoteUpperTo(df32, w16);
const VF m0 = hn::Mul(vss, hn::LoadU(df32, inout + i));
const VF m1 = hn::Mul(vss, hn::LoadU(df32, inout + i + N32));
// (1+weight) * m = m + weight*m = one FMA.
hn::StoreU(hn::MulAdd(m0, w0, m0), df32, inout + i);
hn::StoreU(hn::MulAdd(m1, w1, m1), df32, inout + i + N32);
}
}
// f, f -> bf
// TODO(janwas): consider generic function with adapter for loading bf16/f32
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const float* HWY_RESTRICT weight,
hwy::bfloat16_t* HWY_RESTRICT out, const size_t size) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<hwy::bfloat16_t> dbf;
const hn::Repartition<float, decltype(dbf)> df32;
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
const float ss = SquaredL2(x, size);
const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / static_cast<int>(size) + eps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {
const VF w0 = hn::LoadU(df32, weight + i);
const VF w1 = hn::LoadU(df32, weight + i + N32);
const VF m0 = hn::Mul(vss, hn::LoadU(df32, x + i));
const VF m1 = hn::Mul(vss, hn::LoadU(df32, x + i + N32));
// (1+weight) * m = m + weight*m = one FMA.
const VF out0 = hn::MulAdd(m0, w0, m0);
const VF out1 = hn::MulAdd(m1, w1, m1);
hn::StoreU(hn::OrderedDemote2To(dbf, out0, out1), dbf, out + i);
}
}
// x=f, w=bf16 -> bf16 to enable W16A16 MatVec.
static HWY_NOINLINE HWY_MAYBE_UNUSED void RMSNorm(
const float* HWY_RESTRICT x, const hwy::bfloat16_t* HWY_RESTRICT weight,
hwy::bfloat16_t* HWY_RESTRICT out, const size_t size) {
namespace hn = hwy::HWY_NAMESPACE;
const hn::ScalableTag<hwy::bfloat16_t> dbf;
const hn::Repartition<float, decltype(dbf)> df32;
using VF = hn::Vec<decltype(df32)>;
const size_t N32 = hn::Lanes(df32);
constexpr float eps = 1e-6f;
const float ss = SquaredL2(x, size);
const VF vss = hn::Set(df32, 1.0f / sqrtf(ss / size + eps));
HWY_DASSERT(size % (2 * MaxLanes(df32)) == 0);
for (size_t i = 0; i < size; i += 2 * N32) {
const hn::Vec<decltype(dbf)> w16 = hn::LoadU(dbf, weight + i);
const VF w0 = hn::PromoteLowerTo(df32, w16);
const VF w1 = hn::PromoteUpperTo(df32, w16);
const VF m0 = hn::Mul(vss, hn::LoadU(df32, x + i));
const VF m1 = hn::Mul(vss, hn::LoadU(df32, x + i + N32));
// (1+weight) * m = m + weight*m = one FMA.
const VF out0 = hn::MulAdd(m0, w0, m0);
const VF out1 = hn::MulAdd(m1, w1, m1);
hn::StoreU(hn::OrderedDemote2To(dbf, out0, out1), dbf, out + i);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void AddAbsolutePositionalEmbeddings(
float* HWY_RESTRICT x, size_t dim_model, size_t pos) {
const size_t num_timescales = dim_model / 2;
const float log_timescale_increment =
logf(10000.0f) /
(num_timescales != 0
? static_cast<float>(static_cast<int>(num_timescales) - 1)
: 1.0f);
for (size_t dim = 0; dim < num_timescales; ++dim) {
const float inv_timescale =
expf(static_cast<int>(dim) * -log_timescale_increment);
x[dim] += sinf(pos * inv_timescale);
x[num_timescales + dim] += cosf(pos * inv_timescale);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void Rope(float* HWY_RESTRICT x,
size_t dim_qkv, size_t pos) {
HWY_DASSERT(dim_qkv % 2 == 0);
const size_t half_dim_qkv = dim_qkv / 2;
for (size_t dim = 0; dim < half_dim_qkv; ++dim) {
const float freq_exponents = static_cast<float>(2 * static_cast<int>(dim)) /
static_cast<float>(dim_qkv);
// Replacing with expf(ln(1E4) * freq_exponents) changes results noticeably.
const float timescale = powf(10000.0f, freq_exponents);
const float theta = pos / timescale;
const float cos_val = cosf(theta);
const float sin_val = sinf(theta);
const float x0 = x[dim];
const float x1 = x[dim + half_dim_qkv];
x[dim] = x0 * cos_val - x1 * sin_val;
x[dim + half_dim_qkv] = x0 * sin_val + x1 * cos_val;
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void RopeAndMulBy(const float mul,
float* HWY_RESTRICT x,
size_t dim_qkv,
size_t pos) {
HWY_DASSERT(dim_qkv % 2 == 0);
const size_t half_dim_qkv = dim_qkv / 2;
for (size_t dim = 0; dim < half_dim_qkv; ++dim) {
const float freq_exponents = static_cast<float>(2 * static_cast<int>(dim)) /
static_cast<float>(dim_qkv);
// Replacing with expf(ln(1E4) * freq_exponents) changes results noticeably.
const float timescale = powf(10000.0f, freq_exponents);
const float theta = pos / timescale;
const float cos_val = cosf(theta);
const float sin_val = sinf(theta);
const float x0 = x[dim];
const float x1 = x[dim + half_dim_qkv];
x[dim] = mul * (x0 * cos_val - x1 * sin_val);
x[dim + half_dim_qkv] = mul * (x0 * sin_val + x1 * cos_val);
}
}
static HWY_NOINLINE HWY_MAYBE_UNUSED void AddFrom(
const float* HWY_RESTRICT other, float* HWY_RESTRICT x, size_t size) {
for (size_t i = 0; i < size; ++i) {
x[i] += other[i];
}
}
static HWY_NOINLINE void MulBy(const float* HWY_RESTRICT other,
float* HWY_RESTRICT x, size_t size,
size_t max_pos) {
HWY_DASSERT(max_pos <= size);
for (size_t i = 0; i < max_pos; ++i) {
x[i] *= other[i];
}
}
static HWY_INLINE HWY_MAYBE_UNUSED void MulBy(const float* HWY_RESTRICT other,
float* HWY_RESTRICT x,
size_t size) {
return MulBy(other, x, size, size);
}
static HWY_NOINLINE void MulByConst(float c, float* HWY_RESTRICT x, size_t size,
size_t max_pos) {
HWY_DASSERT(max_pos <= size);
for (size_t i = 0; i < max_pos; ++i) {
x[i] *= c;
}
}
static HWY_INLINE HWY_MAYBE_UNUSED void MulByConst(float c,
float* HWY_RESTRICT x,
size_t size) {
MulByConst(c, x, size, size);
}
static HWY_NOINLINE void MulByConstAndAdd(float c, const float* HWY_RESTRICT x,
float* HWY_RESTRICT out, size_t size,
size_t max_pos) {
for (size_t i = 0; i < max_pos; ++i) {
out[i] += x[i] * c;
}
}
static HWY_INLINE HWY_MAYBE_UNUSED void MulByConstAndAdd(
float c, const float* HWY_RESTRICT x, float* HWY_RESTRICT out,
size_t size) {
MulByConstAndAdd(c, x, out, size, size);
}
static HWY_NOINLINE void Softmax(float* HWY_RESTRICT x, size_t size,
size_t mask_pos) {
HWY_DASSERT(size != 0);
HWY_DASSERT(mask_pos <= size);
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
const D d;
using V = hn::Vec<D>;
// Find max so we can subtract it below.
const V vmin = hn::Set(d, hwy::LowestValue<float>());
V max = vmin;
hn::Foreach(d, x, mask_pos, vmin,
[&max](D d, V v) { max = hn::Max(max, v); });
max = hn::MaxOfLanes(d, max); // broadcast
// Subtract max (avoid precision loss for large exponents) and exponentiate.
V sum = hn::Zero(d);
hn::Transform(d, x, mask_pos, [&sum, max](D d, V v) {
const V out = hn::Exp(d, hn::Sub(v, max));
sum = hn::Add(sum, out);
return out;
});
// Normalize to probability distribution
const float mul = 1.0f / hn::ReduceSum(d, sum);
MulByConst(mul, x, size, mask_pos);
}
static HWY_INLINE HWY_MAYBE_UNUSED void Softmax(float* HWY_RESTRICT x,
size_t size) {
Softmax(x, size, size);
}
static HWY_NOINLINE void LogitsSoftCap(const float cap, float* HWY_RESTRICT x,
size_t size, size_t max_pos) {
HWY_DASSERT(max_pos <= size);
namespace hn = hwy::HWY_NAMESPACE;
using D = hn::ScalableTag<float>;
const D d;
using V = hn::Vec<D>;
const V inv_cap = hn::Set(d, 1.0f / cap);
const V vcap = hn::Set(d, cap);
hn::Transform(d, x, size, [vcap, inv_cap](D d, hn::Vec<D> v) {
return hn::Mul(vcap, hn::Tanh(d, hn::Mul(inv_cap, v)));
});
}
static HWY_INLINE HWY_MAYBE_UNUSED void LogitsSoftCap(const float cap,
float* HWY_RESTRICT x,
size_t size) {
LogitsSoftCap(cap, x, size, size);
}
static HWY_NOINLINE HWY_MAYBE_UNUSED size_t
SampleArgmax(const float* probabilities, size_t vocab_size) {
size_t max_index = 0;
float max_prob = probabilities[0];
for (size_t i = 1; i < vocab_size; ++i) {
if (probabilities[i] > max_prob) {
max_index = i;
max_prob = probabilities[i];
}
}
return max_index;
}
template <size_t k>
static HWY_NOINLINE HWY_MAYBE_UNUSED std::discrete_distribution<int>
create_distribution(std::array<float, k>& top_k, float temperature) {
// re-normalize distribution
for (size_t i = 0; i < k; ++i) {
top_k[i] = exp(log(top_k[i]) / temperature);
}
float denominator = 0.0f;
for (size_t i = 0; i < k; ++i) {
denominator += top_k[i];
}
denominator = 1.0f / denominator;
MulByConst(denominator, top_k.data(), k);
return std::discrete_distribution<int>(std::begin(top_k), std::end(top_k));
}
template <size_t k, typename TAcceptToken>
static HWY_NOINLINE HWY_MAYBE_UNUSED int SampleTopK(
const float* HWY_RESTRICT probabilities, size_t vocab_size,
std::mt19937& gen, float temperature, TAcceptToken& accept_token) {
static_assert(k != 0, "");
// TODO(austinvhuang): Optimize this implementation.
std::array<float, k> top_k{}; // sorted from highest [0], to lowest [k-1]
std::array<int, k> indices{};
for (size_t i = 0; i < vocab_size; ++i) {
if (probabilities[i] < top_k[k - 1] && accept_token(static_cast<int>(i))) {
continue;
}
for (size_t j = 0; j < k; ++j) {
if (probabilities[i] > top_k[j] && accept_token(static_cast<int>(i))) {
// shift elements by 1, insert the new value, move on to next value
for (size_t idx = k - 1; idx > j; --idx) {
top_k[idx] = top_k[idx - 1];
indices[idx] = indices[idx - 1];
}
top_k[j] = probabilities[i];
indices[j] = static_cast<int>(i);
break;
}
}
}
return indices[create_distribution<k>(top_k, temperature)(gen)];
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace gcpp
HWY_AFTER_NAMESPACE();
#endif // NOLINT