-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathllcnn.py
250 lines (198 loc) · 9.79 KB
/
llcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
'''
[email protected] wrote this code for http://teambitecode.com/fyp
'''
import tensorflow as tf
import keras
from keras.layers import Input,Dense,Activation,Conv2D,Lambda
from keras.models import Model
import cv2,os
import numpy as np
import keras.backend as K
from keras.models import model_from_json
from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from .. Image_handler import ImageHandler
from utils import CustomCallback, DataGenerator, tSNE
import argparse
############ args #######################################
VIEW = False
CONV_BLOCKS = 2
RESIDUAL = True
SSMI_KERNAL = (9, 9)
SSMI_STRIDE = (3, 3)
PATCHSIZE = (41, 41)
IMAGESIZE = (256, 256)
#########################################################
def convBlock(x):
x1 = Conv2D(64,(1,1),strides=(1,1),padding='same',use_bias=True)(x)
x2 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True,activation='relu')(x)
x2 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True)(x2)
x3 = Lambda(lambda a: a[0] + a[1])([x1, x2])
x3 = Activation('relu')(x3)
x4 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True, activation='relu')(x3)
x4 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True)(x4)
x5=Lambda(lambda a: a[0]+a[1])([x3,x4])
out=Activation('relu')(x5)
return out
def convBlockwoResidual(x):
x1 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True,activation='relu')(x)
x2 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True)(x1)
x3 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True, activation='relu')(x2)
x4 = Conv2D(64, (3, 3), strides=(1, 1), padding='same', use_bias=True)(x3)
out=Activation('relu')(x4)
return out
def makeLLCNN(inputTensor):
x = Conv2D(64,(1,1),strides=(1,1),padding='same',use_bias=True)(inputTensor)
x = Activation('relu')(x)
for l in range(CONV_BLOCKS):
if RESIDUAL:
x = convBlock(x)
else:
x = convBlockwoResidual(x)
out = Conv2D(3, (1, 1), strides=(1, 1), padding='same', use_bias=True)(x)
return out
def custom_loss(height, width, batchsize, kernal, strides, channels):
assert len(kernal)==2 and kernal[0]%2==1 and kernal[1]%2==1 # odd sized kernal to make things easy
assert len(kernal) == len(strides)
k1 = 0.01
k2 = 0.03
bits_per_pixel = 8*channels
L = 2**bits_per_pixel - 1
c1 = (k1*L)**2
c2 = (k2*L)**2
c1, c2 = 0.0001, 0.001
print("c1 {} c2 {}".format(c1, c2))
def SSMI(x, y):
'''
x : 4D array of the expected value (samples, **image_patch)
y : 4D array of the predicted value (samples, **image_patch)
'''
assert len(K.int_shape(x))==4
assert len(K.int_shape(y))==4
miu_x = K.mean(x, axis=(1,2,3), keepdims=True)
miu_y = K.mean(y, axis=(1,2,3), keepdims=True)
sigma_xx = K.mean((x - miu_x)*(x - miu_x), axis=(1,2,3))
sigma_yy = K.mean((y - miu_y)*(y - miu_y), axis=(1,2,3))
sigma_xy = K.mean((x - miu_x)*(y - miu_y), axis=(1,2,3))
miu_x = K.flatten(miu_x)
miu_y = K.flatten(miu_y)
return (2*miu_x*miu_y + c1)*(2*sigma_xy + c2)/(miu_x**2 + miu_y**2 + c1)/(sigma_xx + sigma_yy + c2)
def f(y_true, y_pred):
padding_pattern = ((kernal[0]//2, kernal[0]//2), (kernal[1]//2, kernal[1]//2))
y_true = K.spatial_2d_padding(y_true, padding_pattern)
y_pred = K.spatial_2d_padding(y_pred, padding_pattern)
kernal_x = kernal[0]
kernal_y = kernal[1]
stride_x, stride_y = strides
x = 0
for idx_x in range(0, height, stride_y):
print(idx_x)
y = 0
for idx_y in range(0, width, stride_x):
if K.image_data_format() == 'channels_first':
tmp=1-SSMI(y_true[:, :, idx_x:idx_x+kernal_x, idx_y:idx_y+kernal_y], y_pred[:, :, idx_x:idx_x+kernal_x, idx_y:idx_y+kernal_y])
else:
tmp=1-SSMI(y_true[:, idx_x:idx_x+kernal_x, idx_y:idx_y+kernal_y, :], y_pred[:, idx_x:idx_x+kernal_x, idx_y:idx_y+kernal_y, :])
try:
loss_ssmi=K.concatenate([loss_ssmi, K.expand_dims(tmp,0)],0)
except Exception as e:
loss_ssmi= K.expand_dims(tmp,0)
y += 1
x += 1
loss_ssmi=K.transpose(loss_ssmi)
true_loss_ssmi = loss_ssmi[:K.shape(y_true)[0]]
return true_loss_ssmi
return f
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-p1", "--pathtrue", help="Path to true images folder", type=str, required=True)
parser.add_argument("-p2", "--pathdark", help="Path to dark images folder", type=str, required=True)
parser.add_argument("-l", "--loss", help="Loss function used", default='mse')
parser.add_argument("-e", "--epochs", default=10, help="Number of epochs to train", type=int)
parser.add_argument("-b", "--batchsize", default=4, help="Batch size", type=int)
parser.add_argument("-s","--save", help="Save stuff", action="store_true")
parser.add_argument("-c","--createdb", help="Create DB using gamma correction. Please specify original image folder path.")
parser.add_argument("-f","--forcetrain", help="Force train without loading weights from hdd", action="store_true")
args = parser.parse_args()
img_hndlr = ImageHandler(IMAGESIZE, patch_size=PATCHSIZE)
if args.createdb is not None:
img_hndlr.create_dataset(args.createdb, args.pathtrue, args.pathdark)
elif not os.path.exists(args.pathdark):
raise Exception("Path to dark images do not exist")
elif not os.path.exists(args.pathtrue):
raise Exception("Path to true images do not exist")
elif img_hndlr.load_images(args.pathtrue, 1)[0].shape != img_hndlr.load_images(args.pathdark, 1)[0].shape != (*IMAGESIZE, 3):
raise Exception("Image dimensions do not match to the defined image size")
############ LOAD IMAGES ################################
X = img_hndlr.load_images(args.pathdark, 16)
Y = img_hndlr.load_images(args.pathtrue, 16)
X = img_hndlr.preprocess_images(X)
Y = img_hndlr.preprocess_images(Y)
print("XY shapes",X.shape,Y.shape)
############ BUILD MODEL ################################
# build model
if os.path.isfile('model.json') and not args.forcetrain:
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
print("Loaded model from json")
else:
# build from scratch
inp = Input((*PATCHSIZE, 3))
out = makeLLCNN(inp)
model = Model(inp, out)
# load weights if available
if os.path.isfile('model.h5') and not args.forcetrain:
try:
model.load_weights("model.h5")
print("Loaded model weights from HFD5")
except Exception as e:
args.forcetrain = True
print(e)
# compile model
if args.loss == 'mse' or args.loss == 'mean_squared_error':
loss = keras.losses.mean_squared_error
elif args.loss == 'ssmi':
loss = custom_loss(X[0].shape[0], X[0].shape[1], args.batchsize, SSMI_KERNAL, strides=SSMI_STRIDE, channels=3)
opt = keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.0001, nesterov=False)
#opt = 'adam'
model.compile(optimizer=opt,loss=loss,metrics=['mean_squared_error'])
print(model.summary())
############ TRAIN ######################################
callbacks_list = []
if args.save:
callbacks_list.append(ModelCheckpoint("weights-{epoch:02d}.hdf5", monitor='val_loss', verbose=1, save_best_only=True, mode='min'))
callbacks_list.append(CustomCallback(model, img_hndlr, img_hndlr.load_images(args.pathdark, 3), view=VIEW))
#tensorboard = TensorBoard(log_dir='./logs', write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None, update_freq='epoch')
callbacks_list.append(EarlyStopping(monitor='val_loss', min_delta=1e-3, patience=10, verbose=0, mode='auto', baseline=None))
# train
if not os.path.isfile('model.h5') or args.forcetrain:
model.fit(X, Y, epochs=args.epochs, batch_size=args.batchsize, validation_split=0.1, verbose=1, callbacks=callbacks_list)
# train using a generator. !USE THIS FOR LARGE DATASETS!
# traindata = DataGenerator(args.pathdark, args.pathtrue, img_hndlr)
# model.fit_generator(traindata, epochs=3, verbose=1, callbacks=callbacks_list, validation_data=None, shuffle=True)
if args.save:
# save model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
print("Model saved to json.")
# save weights
model.save_weights("model.h5")
print("Saved model weights to HFD5")
############ PREDICT ####################################
print("Predicting {} images".format(len(X)))
Y_hat = model.predict(X)
eval_loss = K.eval(loss(Y.astype(np.float64), Y_hat.astype(np.float64)))
eval_loss = eval_loss.reshape((eval_loss.shape[0], -1))
############ SAVE RESULTS ###############################
np.save('loss_values_{}.npy'.format(args.loss), eval_loss)
Y_hat = img_hndlr.inv_preprocess_images(Y_hat)
Y = img_hndlr.inv_preprocess_images(Y)
X = img_hndlr.inv_preprocess_images(X)
img_hndlr.save_images("pred/", np.hstack([X, Y_hat, Y]))
#########################################################
#all = np.concatenate([X,Y,Y_hat], axis=0)
#all = all.reshape((all.shape[0],-1))
#label = np.arange(3).repeat(X.shape[0])
#tSNE(all, label)