forked from gihanjayatilaka/BCI-Project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FullProg.py
261 lines (189 loc) · 6.76 KB
/
FullProg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
import sys
import numpy as np
import sys
from scipy.fftpack import rfft,fftfreq
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def fileRead(fileName,lineToRemove,leftColToRemove,rightColToRemove):
file = open(fileName, 'r')
fullText=file.read()
lines=fullText.split('\n')
#print('Read '+str(len(lines))+' lines')
for x in range(lineToRemove):
lines.pop(0)
ar=[]
for x in range(len(lines)):
temp=[]
fields=lines[x].split(",")
for xx in range(len(fields)):
fields[xx]=fields[xx].strip()
for y in range(leftColToRemove,len(fields)-rightColToRemove):
#print('converting to float >>>'+fields[y])
temp.append(float(fields[y]))
if len(temp)==0:
continue
ar.append(temp)
#print('Reading line '+str(x)+' \r')
sys.stdout.flush()
npar=np.zeros((len(ar), len(ar[0])))
for i in range(len(ar)):
for j in range(len(ar[0])):
npar[i][j] = ar[i][j]
return npar.transpose()
def nextpow2(i):
"""
Find the next power of 2 for number i
"""
n = 1
while n < i:
n *= 2
return n
def readFiles(fileNameList):
NO_OF_CHANNELS=8
PASS_BAND_LOW=3.0
PASS_BAND_HIGH=50.0
NO_OF_BANDS=5
singleBandWidth=(PASS_BAND_HIGH-PASS_BAND_LOW)/NO_OF_BANDS
interestingBands=[x for x in range(NO_OF_BANDS)]
allChannelBandResults=np.zeros((NO_OF_CHANNELS,len(interestingBands)))
fileNames=fileNameList#["openBCI_2013-12-24_meditation.txt"]
Y=[1]
for file in range(len(fileNames)):
ar=fileRead(fileNames[file],4,1,3)#complete
for chan in range(len(ar)):
bandResults = np.zeros(len(interestingBands))
bandCount = np.zeros(len(interestingBands))
freqSpectrum=rfft(ar[chan,:])
timeStep=1.0/250
n=len(ar[chan])
freq=fftfreq(n,d=timeStep)
endIndex=0
startIndex=0
while(freq[startIndex]<PASS_BAND_LOW):
startIndex+=1
while(freq[endIndex]<PASS_BAND_HIGH):
endIndex+=1
endIndex-=1
freqSpectrum=np.abs((freqSpectrum[startIndex:endIndex]))
freq=(freq[startIndex:endIndex])
'''plt.figure()
plt.plot(freq, freqSpectrum)'''
#plt.plot(range(len(freq)),freq)
for f in range(len(freq)):
if(freq[f]>0):
bandResults[int((freq[f]-PASS_BAND_LOW)/singleBandWidth)]+=freqSpectrum[f]
'''band=0
for bb in range(len(interestingBands)):
if interestingBands[bb]>freq[f]:
band=bb-1
break
bandResults[band]+=np.abs(freqSpectrum[f])
bandCount[band]+=1'''
'''
for x in range(len(bandResults)):
if bandCount[x]<1:
bandResults[x]=0
else:
bandResults[x]=bandResults[x]/(1.0*bandCount[x])'''
allChannelBandResults[chan]=bandResults
#print('channel ',chan+1,'of ',len(allChannelBandResults),' channels completed')
#print(allChannelBandResults)
#put the plot code here
'''for i in range(NO_OF_CHANNELS):
plt.figure()
plt.plot(interestingBands, allChannelBandResults[i,:])
plt.show()'''
return allChannelBandResults.flatten()
def readFileAndMakeFeatureVector(fileName):
return readFiles([fileName])
def sliceAndReturnFileNames(bciFileName,pointsPerClass):
file_name=bciFileName
n_files=pointsPerClass
file = open(file_name + '.txt', 'r')
data = []
names = []
while (1):
line = file.readline()
dat = line.strip().split()
try:
num = int(dat[0].strip(','))
data.append(line)
# index =
except:
pass
if (line == ""):
break
# data.append(file.readline())
# print(data)
try:
test = data[1000:]
except:
print("File not big enough")
return
start_adj = 1000
n_min = 1000
n_len = len(test)
for i in range(n_files):
start = start_adj + np.random.randint(0, n_len - start_adj - n_min)
end = start + n_min + np.random.randint(0, 500)
end = min(end, n_len)
# print(start, end)
fw_name = file_name + str(i) + '.txt'
names.append(fw_name)
fw = open(fw_name, 'w')
for j in range(start, end):
# print(j)
fw.write(test[j])
fw.close()
return names
DIMENSIONS=int(sys.argv[1])
CLASSES=int(sys.argv[2])
TRAINING_POINTS_PER_CLASS=int(sys.argv[3])
TEST_DATA_POINTS=int(sys.argv[4])
X=np.zeros((TRAINING_POINTS_PER_CLASS*CLASSES,DIMENSIONS))
Y=np.zeros((TRAINING_POINTS_PER_CLASS*CLASSES))
for trainingClass in range(CLASSES):
bciFile=input('Enter the output file name of BCI for class '+str(trainingClass)+':\n')
fileNames=sliceAndReturnFileNames(bciFile,TRAINING_POINTS_PER_CLASS)
for f in range(len(fileNames)):
X[trainingClass*TRAINING_POINTS_PER_CLASS + f]=readFileAndMakeFeatureVector(fileNames[f])
Y[trainingClass*TRAINING_POINTS_PER_CLASS + f]=trainingClass
print('Finished gathering training data')
clf = LDA(solver='lsqr')
clf.fit(X, Y)
print('Finished training')
'''fig=plt.figure()
ax = fig.add_subplot(111, projection='3d')
aa=8
bb=3
cc=1
for zz in range(80):
if zz%2==0:
ax.scatter(X[zz:,aa],X[zz:,bb],X[zz:,cc],marker='.',c='r')
else:
ax.scatter(X[zz:, aa], X[zz:, bb], X[zz:, cc], marker='.',c='b')
#plt.show()
print(X[:,1])'''
correct=0
wrong=0
pre=clf.predict(X)
for x in range(len(X)):
#print('y='+str(Y[x])+' prediction='+str(pre[x]))
if pre[x] == Y[x]:
correct += 1
else:
wrong += 1
accuracy=(correct*100.0)/(correct+wrong)
print('accuracy for training data='+str(accuracy))
while(True):
XX=np.zeros((TEST_DATA_POINTS,DIMENSIONS))
YY=np.zeros((TEST_DATA_POINTS))
bciFile = input('Enter the output file name of BCI for class ' + str(trainingClass) + ':\n')
fileNames = sliceAndReturnFileNames(bciFile, TRAINING_POINTS_PER_CLASS)
for ff in range(fileNames):
XX[ff]=readFileAndMakeFeatureVector(fileNames[ff])
clf.predict(XX,YY)
ans=np.mean(YY)
print('ANSWER = '+str(ans))