-
Notifications
You must be signed in to change notification settings - Fork 1
/
keystore2_engine.cpp
440 lines (376 loc) · 16.4 KB
/
keystore2_engine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "keystore2_engine.h"
#include <aidl/android/system/keystore2/IKeystoreService.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <android/binder_manager.h>
#include <private/android_filesystem_config.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/ecdsa.h>
#include <openssl/engine.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#define AT __func__ << ":" << __LINE__ << " "
constexpr const char keystore2_service_name[] = "android.system.keystore2.IKeystoreService/default";
const std::string keystore2_grant_id_prefix("ks2_keystore-engine_grant_id:");
/**
* Keystore 2.0 namespace identifiers.
* Keep in sync with system/sepolicy/private/keystore2_key_contexts.
*/
constexpr const int64_t KS2_NAMESPACE_WIFI = 102;
namespace ks2 = ::aidl::android::system::keystore2;
namespace KMV1 = ::aidl::android::hardware::security::keymint;
namespace {
int64_t getNamespaceforCurrentUid() {
auto uid = getuid();
switch (uid) {
case AID_WIFI:
return KS2_NAMESPACE_WIFI;
// 0 is the super user namespace, and nothing has access to this namespace on user builds.
// So this will always fail.
default:
return 0;
}
}
struct Keystore2KeyBackend {
ks2::KeyDescriptor descriptor_;
std::shared_ptr<ks2::IKeystoreSecurityLevel> i_keystore_security_level_;
};
/* key_backend_dup is called when one of the RSA or EC_KEY objects is duplicated. */
extern "C" int key_backend_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */,
void** from_d, int /* index */, long /* argl */, void* /* argp */) {
auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(*from_d);
if (key_backend != nullptr) {
*from_d = new std::shared_ptr<Keystore2KeyBackend>(*key_backend);
}
return 1;
}
/* key_backend_free is called when one of the RSA, DSA or EC_KEY object is freed. */
extern "C" void key_backend_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */,
int /* index */, long /* argl */, void* /* argp */) {
delete reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(ptr);
}
extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len);
extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig,
unsigned int* sig_len, EC_KEY* ec_key);
/* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by
* forwarding the requested operations to Keystore. */
class Keystore2Engine {
public:
Keystore2Engine()
: rsa_index_(RSA_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */,
key_backend_dup, key_backend_free)),
ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, nullptr /* argp */,
nullptr /* new_func */, key_backend_dup,
key_backend_free)),
engine_(ENGINE_new()) {
memset(&rsa_method_, 0, sizeof(rsa_method_));
rsa_method_.common.is_static = 1;
rsa_method_.private_transform = rsa_private_transform;
rsa_method_.flags = RSA_FLAG_OPAQUE;
ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_));
memset(&ecdsa_method_, 0, sizeof(ecdsa_method_));
ecdsa_method_.common.is_static = 1;
ecdsa_method_.sign = ecdsa_sign;
ecdsa_method_.flags = ECDSA_FLAG_OPAQUE;
ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_));
}
int rsa_ex_index() const { return rsa_index_; }
int ec_key_ex_index() const { return ec_key_index_; }
const ENGINE* engine() const { return engine_; }
static const Keystore2Engine& get() {
static Keystore2Engine engine;
return engine;
}
private:
const int rsa_index_;
const int ec_key_index_;
RSA_METHOD rsa_method_;
ECDSA_METHOD ecdsa_method_;
ENGINE* const engine_;
};
#define OWNERSHIP_TRANSFERRED(x) x.release()
/* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public
* part is taken from |public_rsa| and the private operations are forwarded to
* KeyStore and operate on the key named |key_id|. */
bssl::UniquePtr<EVP_PKEY> wrap_rsa(std::shared_ptr<Keystore2KeyBackend> key_backend,
const RSA* public_rsa) {
bssl::UniquePtr<RSA> rsa(RSA_new_method(Keystore2Engine::get().engine()));
if (rsa.get() == nullptr) {
return nullptr;
}
auto key_backend_copy = new decltype(key_backend)(key_backend);
if (!RSA_set_ex_data(rsa.get(), Keystore2Engine::get().rsa_ex_index(), key_backend_copy)) {
delete key_backend_copy;
return nullptr;
}
rsa->n = BN_dup(public_rsa->n);
rsa->e = BN_dup(public_rsa->e);
if (rsa->n == nullptr || rsa->e == nullptr) {
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new());
if (result.get() == nullptr || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) {
return nullptr;
}
OWNERSHIP_TRANSFERRED(rsa);
return result;
}
/* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public
* part is taken from |public_rsa| and the private operations are forwarded to
* KeyStore and operate on the key named |key_id|. */
bssl::UniquePtr<EVP_PKEY> wrap_ecdsa(std::shared_ptr<Keystore2KeyBackend> key_backend,
const EC_KEY* public_ecdsa) {
bssl::UniquePtr<EC_KEY> ec(EC_KEY_new_method(Keystore2Engine::get().engine()));
if (ec.get() == nullptr) {
return nullptr;
}
if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) ||
!EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) {
return nullptr;
}
auto key_backend_copy = new decltype(key_backend)(key_backend);
if (!EC_KEY_set_ex_data(ec.get(), Keystore2Engine::get().ec_key_ex_index(), key_backend_copy)) {
delete key_backend_copy;
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new());
if (result.get() == nullptr || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) {
return nullptr;
}
OWNERSHIP_TRANSFERRED(ec);
return result;
}
std::optional<std::vector<uint8_t>> keystore2_sign(const Keystore2KeyBackend& key_backend,
std::vector<uint8_t> input,
KMV1::Algorithm algorithm) {
auto sec_level = key_backend.i_keystore_security_level_;
ks2::CreateOperationResponse response;
std::vector<KMV1::KeyParameter> op_params(4);
op_params[0] = KMV1::KeyParameter{
.tag = KMV1::Tag::PURPOSE,
.value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::keyPurpose>(
KMV1::KeyPurpose::SIGN)};
op_params[1] = KMV1::KeyParameter{
.tag = KMV1::Tag::ALGORITHM,
.value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::algorithm>(algorithm)};
op_params[2] = KMV1::KeyParameter{
.tag = KMV1::Tag::PADDING,
.value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::paddingMode>(
KMV1::PaddingMode::NONE)};
op_params[3] =
KMV1::KeyParameter{.tag = KMV1::Tag::DIGEST,
.value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::digest>(
KMV1::Digest::NONE)};
auto rc = sec_level->createOperation(key_backend.descriptor_, op_params, false /* forced */,
&response);
if (!rc.isOk()) {
auto exception_code = rc.getExceptionCode();
if (exception_code == EX_SERVICE_SPECIFIC) {
LOG(ERROR) << AT << "Keystore createOperation returned service specific error: "
<< rc.getServiceSpecificError();
} else {
LOG(ERROR) << AT << "Communication with Keystore createOperation failed error: "
<< exception_code;
}
return std::nullopt;
}
auto op = response.iOperation;
std::optional<std::vector<uint8_t>> output = std::nullopt;
rc = op->finish(std::move(input), {}, &output);
if (!rc.isOk()) {
auto exception_code = rc.getExceptionCode();
if (exception_code == EX_SERVICE_SPECIFIC) {
LOG(ERROR) << AT << "Keystore finish returned service specific error: "
<< rc.getServiceSpecificError();
} else {
LOG(ERROR) << AT
<< "Communication with Keystore finish failed error: " << exception_code;
}
return std::nullopt;
}
if (!output) {
LOG(ERROR) << AT << "We did not get a signature from Keystore.";
}
return output;
}
/* rsa_private_transform takes a big-endian integer from |in|, calculates the
* d'th power of it, modulo the RSA modulus, and writes the result as a
* big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It
* returns one on success and zero otherwise. */
extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) {
auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(
RSA_get_ex_data(rsa, Keystore2Engine::get().rsa_ex_index()));
if (key_backend == nullptr) {
LOG(ERROR) << AT << "Invalid key.";
return 0;
}
auto output =
keystore2_sign(**key_backend, std::vector<uint8_t>(in, in + len), KMV1::Algorithm::RSA);
if (!output) {
return 0;
}
if (output->size() > len) {
/* The result of the RSA operation can never be larger than the size of
* the modulus so we assume that the result has extra zeros on the
* left. This provides attackers with an oracle, but there's nothing
* that we can do about it here. */
LOG(WARNING) << "Reply len " << output->size() << " greater than expected " << len;
memcpy(out, &output->data()[output->size() - len], len);
} else if (output->size() < len) {
/* If the Keystore implementation returns a short value we assume that
* it's because it removed leading zeros from the left side. This is
* bad because it provides attackers with an oracle but we cannot do
* anything about a broken Keystore implementation here. */
LOG(WARNING) << "Reply len " << output->size() << " less than expected " << len;
memset(out, 0, len);
memcpy(out + len - output->size(), output->data(), output->size());
} else {
memcpy(out, output->data(), len);
}
return 1;
}
/* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes
* the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on
* success and zero otherwise. */
extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig,
unsigned int* sig_len, EC_KEY* ec_key) {
auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(
EC_KEY_get_ex_data(ec_key, Keystore2Engine::get().ec_key_ex_index()));
if (key_backend == nullptr) {
LOG(ERROR) << AT << "Invalid key.";
return 0;
}
size_t ecdsa_size = ECDSA_size(ec_key);
auto output = keystore2_sign(**key_backend, std::vector<uint8_t>(digest, digest + digest_len),
KMV1::Algorithm::EC);
if (!output) {
LOG(ERROR) << "There was an error during ecdsa_sign.";
return 0;
}
if (output->size() == 0) {
LOG(ERROR) << "No valid signature returned";
return 0;
} else if (output->size() > ecdsa_size) {
LOG(ERROR) << "Signature is too large";
return 0;
}
memcpy(sig, output->data(), output->size());
*sig_len = output->size();
return 1;
}
bssl::UniquePtr<EVP_PKEY> extractPubKey(const std::vector<uint8_t>& cert_bytes) {
const uint8_t* p = cert_bytes.data();
bssl::UniquePtr<X509> decoded_cert(d2i_X509(nullptr, &p, cert_bytes.size()));
if (!decoded_cert) {
LOG(INFO) << AT << "Could not decode the cert, trying decoding as PEM";
bssl::UniquePtr<BIO> cert_bio(BIO_new_mem_buf(cert_bytes.data(), cert_bytes.size()));
if (!cert_bio) {
LOG(ERROR) << AT << "Failed to create BIO";
return {};
}
decoded_cert =
bssl::UniquePtr<X509>(PEM_read_bio_X509(cert_bio.get(), nullptr, nullptr, nullptr));
}
if (!decoded_cert) {
LOG(ERROR) << AT << "Could not decode the cert.";
return {};
}
bssl::UniquePtr<EVP_PKEY> pub_key(X509_get_pubkey(decoded_cert.get()));
if (!pub_key) {
LOG(ERROR) << AT << "Could not extract public key.";
return {};
}
return pub_key;
}
} // namespace
/* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or
* ECDSA key where the public part of the key reflects the value of the key
* named |key_id| in Keystore and the private operations are forwarded onto
* KeyStore. */
extern "C" EVP_PKEY* EVP_PKEY_from_keystore2(const char* key_id) {
::ndk::SpAIBinder keystoreBinder(AServiceManager_checkService(keystore2_service_name));
auto keystore2 = ks2::IKeystoreService::fromBinder(keystoreBinder);
if (!keystore2) {
LOG(ERROR) << AT << "Unable to connect to Keystore 2.0.";
return nullptr;
}
std::string alias = key_id;
if (android::base::StartsWith(alias, "USRPKEY_")) {
LOG(WARNING) << AT << "Keystore backend used with legacy alias prefix - ignoring.";
alias = alias.substr(8);
}
ks2::KeyDescriptor descriptor = {
.domain = ks2::Domain::SELINUX,
.nspace = getNamespaceforCurrentUid(),
.alias = alias,
.blob = std::nullopt,
};
// If the key_id starts with the grant id prefix, we parse the following string as numeric
// grant id. We can then use the grant domain without alias to load the designated key.
if (alias.find(keystore2_grant_id_prefix) == 0) {
std::stringstream s(alias.substr(keystore2_grant_id_prefix.size()));
s >> std::hex >> reinterpret_cast<uint64_t&>(descriptor.nspace);
descriptor.domain = ks2::Domain::GRANT;
descriptor.alias = std::nullopt;
}
ks2::KeyEntryResponse response;
auto rc = keystore2->getKeyEntry(descriptor, &response);
if (!rc.isOk()) {
auto exception_code = rc.getExceptionCode();
if (exception_code == EX_SERVICE_SPECIFIC) {
LOG(ERROR) << AT << "Keystore getKeyEntry returned service specific error: "
<< rc.getServiceSpecificError();
} else {
LOG(ERROR) << AT << "Communication with Keystore getKeyEntry failed error: "
<< exception_code;
}
return nullptr;
}
if (!response.metadata.certificate) {
LOG(ERROR) << AT << "No public key found.";
return nullptr;
}
auto pkey = extractPubKey(*response.metadata.certificate);
if (!pkey) {
LOG(ERROR) << AT << "Failed to extract public key.";
return nullptr;
}
auto key_backend = std::make_shared<Keystore2KeyBackend>(
Keystore2KeyBackend{response.metadata.key, response.iSecurityLevel});
bssl::UniquePtr<EVP_PKEY> result;
switch (EVP_PKEY_type(pkey->type)) {
case EVP_PKEY_RSA: {
bssl::UniquePtr<RSA> public_rsa(EVP_PKEY_get1_RSA(pkey.get()));
result = wrap_rsa(key_backend, public_rsa.get());
break;
}
case EVP_PKEY_EC: {
bssl::UniquePtr<EC_KEY> public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get()));
result = wrap_ecdsa(key_backend, public_ecdsa.get());
break;
}
default:
LOG(ERROR) << AT << "Unsupported key type " << EVP_PKEY_type(pkey->type);
return nullptr;
}
return result.release();
}