forked from Yishun99/KB-QA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
biLSTM.py
89 lines (77 loc) · 4.67 KB
/
biLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import tensorflow as tf
class BiLSTM(object):
def __init__(self, batch_size, max_sentence_len, embeddings, embedding_size, rnn_size, margin):
self.batch_size = batch_size
self.max_sentence_len = max_sentence_len
self.embeddings = embeddings
self.embedding_size = embedding_size
self.rnn_size = rnn_size
self.margin = margin
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
self.inputQuestions = tf.placeholder(tf.int32, shape=[None, self.max_sentence_len])
self.inputTrueAnswers = tf.placeholder(tf.int32, shape=[None, self.max_sentence_len])
self.inputFalseAnswers = tf.placeholder(tf.int32, shape=[None, self.max_sentence_len])
self.inputTestQuestions = tf.placeholder(tf.int32, shape=[None, self.max_sentence_len])
self.inputTestAnswers = tf.placeholder(tf.int32, shape=[None, self.max_sentence_len])
# embedding layer
with tf.device("/cpu:0"), tf.name_scope("embedding_layer"):
tf_embedding = tf.Variable(tf.to_float(self.embeddings), trainable=True, name="W")
questions = tf.nn.embedding_lookup(tf_embedding, self.inputQuestions)
true_answers = tf.nn.embedding_lookup(tf_embedding, self.inputTrueAnswers)
false_answers = tf.nn.embedding_lookup(tf_embedding, self.inputFalseAnswers)
test_questions = tf.nn.embedding_lookup(tf_embedding, self.inputTestQuestions)
test_answers = tf.nn.embedding_lookup(tf_embedding, self.inputTestAnswers)
# LSTM
with tf.variable_scope("LSTM_scope", reuse=None):
question1 = self.biLSTMCell(questions, self.rnn_size)
question2 = tf.nn.tanh(self.max_pooling(question1))
with tf.variable_scope("LSTM_scope", reuse=True):
true_answer1 = self.biLSTMCell(true_answers, self.rnn_size)
true_answer2 = tf.nn.tanh(self.max_pooling(true_answer1))
false_answer1 = self.biLSTMCell(false_answers, self.rnn_size)
false_answer2 = tf.nn.tanh(self.max_pooling(false_answer1))
test_question1 = self.biLSTMCell(test_questions, self.rnn_size)
test_question2 = tf.nn.tanh(self.max_pooling(test_question1))
test_answer1 = self.biLSTMCell(test_answers, self.rnn_size)
test_answer2 = tf.nn.tanh(self.max_pooling(test_answer1))
self.trueCosSim = self.get_cosine_similarity(question2, true_answer2)
self.falseCosSim = self.get_cosine_similarity(question2, false_answer2)
self.loss = self.get_loss(self.trueCosSim, self.falseCosSim, self.margin)
self.result = self.get_cosine_similarity(test_question2, test_answer2)
def biLSTMCell(self, x, hidden_size):
input_x = tf.transpose(x, [1, 0, 2])
input_x = tf.unstack(input_x)
lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(hidden_size, forget_bias=1.0, state_is_tuple=True)
lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(lstm_fw_cell, input_keep_prob=self.dropout_keep_prob,
output_keep_prob=self.dropout_keep_prob)
lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(hidden_size, forget_bias=1.0, state_is_tuple=True)
lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(lstm_bw_cell, input_keep_prob=self.dropout_keep_prob,
output_keep_prob=self.dropout_keep_prob)
output, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, input_x, dtype=tf.float32)
output = tf.stack(output)
output = tf.transpose(output, [1, 0, 2])
return output
@staticmethod
def get_cosine_similarity(q, a):
q1 = tf.sqrt(tf.reduce_sum(tf.multiply(q, q), 1))
a1 = tf.sqrt(tf.reduce_sum(tf.multiply(a, a), 1))
mul = tf.reduce_sum(tf.multiply(q, a), 1)
cosSim = tf.div(mul, tf.multiply(q1, a1))
return cosSim
@staticmethod
def max_pooling(lstm_out):
height = int(lstm_out.get_shape()[1])
width = int(lstm_out.get_shape()[2])
lstm_out = tf.expand_dims(lstm_out, -1)
output = tf.nn.max_pool(lstm_out, ksize=[1, height, 1, 1], strides=[1, 1, 1, 1], padding='VALID')
output = tf.reshape(output, [-1, width])
return output
@staticmethod
def get_loss(trueCosSim, falseCosSim, margin):
zero = tf.fill(tf.shape(trueCosSim), 0.0)
tfMargin = tf.fill(tf.shape(trueCosSim), margin)
with tf.name_scope("loss"):
# max-margin losses = max(0, margin - true + false)
losses = tf.maximum(zero, tf.subtract(tfMargin, tf.subtract(trueCosSim, falseCosSim)))
loss = tf.reduce_sum(losses)
return loss